導航:首頁 > 行情中心 > 馬爾科夫鏈在股票走勢的應用

馬爾科夫鏈在股票走勢的應用

發布時間:2022-04-28 10:40:53

1. 您好,我想問問您的一個回答的論文題目,百度知道上的問題是:(以下補充)謝謝!

摘 要 研究了滬深300指數日收益率時間序列,經檢驗其具有馬氏性,並建立了馬爾可夫鏈模型。取交易日分時數據,根據分時數據確定狀態初始概率分布,通過一步轉移概率矩陣對下一交易日的日收益率進行了預測。對該模型分析和計算,得出其為有限狀態的不可約、非周期馬爾可夫鏈,求解其平穩分布,從而得到滬深300指數日收益率概率分布。並預測了滬深300指數上漲或下跌的概率,可為投資管理提供參考。
關鍵詞 馬爾可夫鏈模型 滬深300指數 日收益率概率分布 平穩分布

1 引言
滬深300指數於2005年4月正式發布,其成份股為市場中市場代表性好,流動性高,交易活躍的主流投資股票,能夠反映市場主流投資的收益情況。眾多證券投資基金以滬深300指數為業績基準,因此對滬深300指數收益情況研究顯得尤為重要,可為投資管理提供參考。
取滬深300指數交易日收盤價計算日收益率,可按區間將日收益率分為不同的狀態,則日收益率時間序列可視為狀態的變化序列,從而可以嘗試採用馬爾可夫鏈模型進行處理。馬爾可夫鏈模型在證券市場的應用已取得了不少成果。參考文獻[1]、[2]、[3]和[4]的研究比較類似,均以上證綜合指數的日收盤價為對象,按漲、平和跌劃分狀態,取得了一定的成果。但只取了40~45個交易日的數據進行分析,歷史數據過少且狀態劃分較為粗糙。參考文獻[5]和[6]以上證綜合指數周價格為對象,考察指數在的所定義區間(狀態)的概率,然其狀態偏少(分別只有6個和5個狀態),區間跨度較大,所得結果實際參考價值有限。參考文獻[7]對單只股票按股票價格劃分狀態,也取得了一定成果。
然而收益率是證券市場研究得更多的對象。本文以滬深300指數日收益率為對考察對象進行深入研究,採用matlab7.1作為計算工具,對較多狀態和歷史數據進行了處理,得出了滬深300指數日收益率概率分布,並對日收益率的變化進行了預測。
2 馬爾可夫鏈模型方法
2.1 馬爾可夫鏈的定義
設有隨機過程{Xt,t∈T},T是離散的時間集合,即T={0,1,2,L},其相應Xt可能取值的全體組成狀態空間是離散的狀態集I={i0,i1,i2,L},若對於任意的整數t∈T和任意的i0,i1,L,it+1∈I,條件概率則稱{Xt,t∈T}為馬爾可夫鏈,簡稱馬氏鏈。馬爾可夫鏈的馬氏性的數學表達式如下:
P{Xn+1=in+1|X0=i0,X1=i1,L,Xn=in}=P{Xn+1=in+1|Xn=in} (1)
2.2 系統狀態概率矩陣估計
馬爾可夫鏈模型方法的基本內容之一是系統狀態的轉移概率矩陣估算。估算系統狀態的概率轉移矩陣一般有主觀概率法和統計估演算法兩種方法。主觀概率法一般是在缺乏歷史統計資料或資料不全的情況下使用。本文採用統計估演算法,其主要過程如下:假定系統有m種狀態S1,S2,L,Sm根據系統的狀態轉移的歷史記錄,可得到表1的統計表格。其中nij表示在考察的歷史數據范圍內系統由狀態i一步轉移到狀態j的次數,以■ij表示系統由狀態i一步轉移到狀態的轉移概率估計量,則由表1的歷史統計數據得到■ij的估計值和狀態的轉移概率矩陣P如下:
■ij=nij■nik,P=p11 K p1mM O Mpm1 L pmn(2)
2.3 馬氏性檢驗
隨機過程{Xt,t∈T}是否為馬爾可夫鏈關鍵是檢驗其馬氏性,可採用χ2統計量來檢驗。其步驟如下:(nij)m×m的第j列之和除以各行各列的總和所得到的值記為■.j,即:
■.j=■nij■■nik,且■ij=nij■nik(3)
當m較大時,統計量服從自由度為(m-1)2的χ2分布。選定置信度α,查表得χ2α((m-1)2),如果■2>χ2α((m-1)2),則可認為{Xt,t∈T}符合馬氏性,否則認為不是馬爾可夫鏈。
■2=2■■nijlog■ij■.j(4)
2.4 馬爾可夫鏈性質
定義了狀態空間和狀態的轉移概率矩陣P,也就構建了馬爾可夫鏈模型。記Pt(0)為初始概率向量,PT(n)為馬爾可夫鏈時刻的絕對概率向量,P(n)為馬爾可夫鏈的n步轉移概率矩陣,則有如下定理:
P(n)=PnPT(n)=PT(0)P(n)(5)
可對馬爾可夫鏈的狀態進行分類和狀態空間分解,從而考察該馬爾可夫鏈模型的不可約閉集、周期性和遍歷性。馬爾可夫鏈的平穩分布有定理不可約、非周期馬爾可夫鏈是正常返的充要條件是存在平穩分布;有限狀態的不可約、非周期馬爾可夫鏈必定存在平穩過程。
3 馬爾可夫鏈模型方法應用
3.1 觀測值的描述和狀態劃分
取滬深300指數從2005年1月4日~2007年4月20日共555個交易日收盤價計算日收益率(未考慮分紅),將日收益率乘以100並記為Ri,仍稱為日收益率。計算公式為:
Ri=(Pi-Pi-1)×100/Pi-1(6)
其中,Pi為日收盤價。
滬深300指數運行比較平穩,在考察的歷史數據范圍內日收益率有98.38%在[-4.5,4.5]。可將此范圍按0.5的間距分為18個區間,將小於-4.5和大於4.5各記1區間,共得到20個區間。根據日收益率所在區間劃分為各個狀態空間,即可得20個狀態(見表2)。

3.2 馬氏性檢驗
採用χ2統計量檢驗隨機過程{Xt,t∈T}是否具有馬氏性。用前述統計估演算法得到頻率矩陣(nij)20×20。
由(3)式和(4)式可得:■.j=■nij■■nik,且■ij=nij■nik,■2=2■■nijlog■ij■.j=446.96,令自由度為k=(m-1)2即k=361,取置信度α=0.01。由於k>45,χ2α(k)不能直接查表獲得,當k充分大時,有:
χ2α(k)≈■(zα+■)2(7)
其中,zα是標准正態分布的上α分位點。查表得z0.01=2.325,故可由(1)、(7)式得,即統計量,隨機過程{Xt,t∈T}符合馬氏性,所得模型是馬爾可夫鏈模型。
3.3 計算轉移概率矩陣及狀態一步轉移
由頻率矩陣(nij)20×20和(1)、(2)式得轉移概率矩陣為P=(Pij)20×20。考察2007年4月20日分時交易數據(9:30~15:30共241個數據),按前述狀態劃分方法將分時交易數據收益率歸於各狀態,並記Ci為屬於狀態i的個數,初始概率向量PT(0)=(p1,p2,L,pt,L,p20),則:
pj=Cj/241,j=1,2,K,20(8)
下一交易日日收益率分布概率PT(0)={p1(1),p2(1),L,pi(1),L,p20(1)},且有PT(1)-PT(0)p,計算結果如表3所示。

3.4 馬爾可夫鏈遍歷性和平穩分布
可以分析該馬爾可夫鏈的不可約集和周期性,從而進一步考察其平穩分布,然而其分析和求解非常復雜。本文使用matlab7.1採用如下演算法進行求解:將一步轉移概率矩陣P做乘冪運算,當時Pn+1=Pn停止,若n>5 000亦停止運算,返回Pn和n。計算發現當n=48時達到穩定,即有P(∞)=P(48)=P48。考察矩陣P(48)易知:各行數據都相等,不存在數值為0的行和列,且任意一行的行和為1。故該馬爾可夫鏈{Xt,t∈T}只有一個不可約集,具有遍歷性,且存在平穩分布{πj,j∈I},平穩分布為P(48)任意一行。從以上計算和分析亦可知該馬爾可夫鏈是不可約、非周期的馬爾可夫鏈,存在平穩分布。計算所得平穩分布如表4所示。
3.5 計算結果分析
表3、表4給出了由當日收益率統計出的初始概率向量PT(0),狀態一步預測所得絕對概率向量PT(1)和日收益率平穩分布,由表3和表4綜合可得圖1。可以看出,雖然當日(2007年4月20日)收益率在區間(1.5,4.5)波動且在(2.5,4.5)內的概率達到了0.7261,表明在2007年4月20日,日收益率較高(實際收盤時,日收益率為4.41),但其下一交易日和從長遠來看其日收益率概率分布依然可能在每個區間。這是顯然的,因為日收益率是隨機波動的。
對下一交易日收益率預測(PT(1)),發現在下一交易日收益率小於0的概率為0.4729,大於0的概率為0.5271,即下一交易日收益率大於0的概率相對較高,其中在區間(-2,-1.5)、(0.5,1)和(1,1.5)概率0.2675、0.161和0.1091依次排前三位,也說明下一交易日收益率在(-2,-1.5)的概率會比較高,有一定的風險。
從日收益率長遠情況(平穩分布)來看,其分布類似正態分布但有正的偏度,說明其極具投資潛力。日收益率小於0的概率為0.4107,大於0的概率為0.5893,即日收益率大於0的概率相當的高於其小於0的概率。
4 結語
採用馬爾可夫鏈模型方法可以依據某一交易日收益率情況向對下一交易日進行預測,也可得到從長遠來看其日收益率的概率分布,定量描述了日收益率。通過對滬深300指數日收益率分析和計算,求得滬深300指數日收益率的概率分布,發現滬深300指數日收益率大於0的概率相對較大(從長遠看,達到了0.5893,若考慮分紅此概率還會變大),長期看來滬深300指數表現樂觀。若以滬深300指數構建指數基金再加以調整,可望獲得較好的回報。
筆者亦採用范圍(-5,5)、狀態區間間距為1和范圍(-6,6)、狀態區間間距為2進行運算,其所得結果類似。當採用更大的范圍(如-10,10等)和不同的區間大小進行運算,計算發現若狀態劃分過多,所得模型不易通過馬氏性檢驗,如何更合理的劃分狀態使得到的結果更精確是下一步的研究之一。在後續的工作中,採用ANN考察所得的日收益率預測和實際日收益率的關系也是重要的研究內容。馬爾可夫鏈模型方法也可對上證指數和深證成指數進行類似分析。
參考文獻
1 關麗娟,趙鳴.滬綜指走勢的馬爾可夫鏈模型預測[J].山東行政學院,山東省經濟管理幹部學院學報,2005(4)
2 陳奕余.基於馬爾可夫鏈模型的我國股票指數研究[J].商場現代化(學術研討),2005(2)
3 肖澤磊,盧悉早.基於馬爾可夫鏈系統的上證指數探討[J].科技創業月刊,2005(9)
4 邊廷亮,張潔.運用馬爾可夫鏈模型預測滬綜合指數[J].統計與決策,2004(6)
5 侯永建,周浩.證券市場的隨機過程方法預測[J].商業研究,2003(2)
6 王新蕾.股指馬氏性的檢驗和預測[J].統計與決策,2005(8)
7 張宇山,廖芹.馬爾可夫鏈在股市分析中的若干應用[J].華南理工大學學報(自然科學版),2003(7)
8 馮文權.經濟預測與決策技術[M].武漢:武漢大學出版社,2002
9 劉次華.隨機過程[M].武漢:華中科技大學出版社,2001
10 盛千聚.概率論與數理統計[M].北京:高等教育出版社.1989轉

2. 什麼是馬爾科夫鏈

馬爾可夫鏈,因安德烈•馬爾可夫(A.A.Markov,1856-1922)得名,是數學中具有馬爾可夫性質的離散時間隨機過程。該過程中,在給定當前知識或信息的情況下,過去(即當期以前的歷史狀態)對於預測將來(即當期以後的未來狀態)是無關的。
原理簡介
馬爾可夫鏈是隨機變數X_1,X_2,X_3...的一個數列。這些變數的范圍,即他們所有可能取值的集合,被稱為「狀態空間」,而X_n的值則是在時間n的狀態。如果X_{n+1}對於過去狀態的條件概率分布僅是X_n的一個函數,則 P(X_{n+1}=x|X_0, X_1, X_2, \ldots, X_n) = P(X_{n+1}=x|X_n). 這里x為過程中的某個狀態。上面這個恆等式可以被看作是馬爾可夫性質。
編輯本段理論發展
馬爾可夫在1906年首先做出了這類過程 。而將此一般化到可數無限狀態空間是由柯爾莫果洛夫在1936年給出的。 馬爾可夫鏈與布朗運動以及遍歷假說這兩個二十世紀初期物理學重要課題是相聯系的,但馬爾可夫尋求的似乎不僅於數學動機,名義上是對於縱屬事件大數法則的擴張。 物理馬爾可夫鏈通常用來建模排隊理論和統計學中的建模,還可作為信號模型用於熵編碼技術,如算術編碼(著名的LZMA數據壓縮演算法就使用了馬爾可夫鏈與類似於算術編碼的區間編碼)。馬爾可夫鏈也有眾多的生物學應用,特別是人口過程,可以幫助模擬生物人口過程的建模。隱蔽馬爾可夫模型還被用於生物信息學,用以編碼區域或基因預測。 馬爾可夫鏈最近的應用是在地理統計學(geostatistics)中。其中,馬爾可夫鏈用在基於觀察數據的二到三維離散變數的隨機模擬。這一應用類似於「克里金」地理統計學(Kriging geostatistics),被稱為是「馬爾可夫鏈地理統計學」。這一馬爾可夫鏈地理統計學方法仍在發展過程中。
編輯本段馬爾可夫過程
馬爾可夫過程,能為給定樣品文本,生成粗略,但看似真實的文本:他們被用於眾多供消遣的「模仿生成器」軟體。馬爾可夫鏈還被用於譜曲。 它們是後面進行推導必不可少的條件:(1)尺度間具有馬爾可夫性質.隨機場從上到下形成了馬爾可夫鏈,即 Xi 的分布只依賴於 Xi,與其他更粗 糙的尺度無關,這是因為 Xi 已經包含了所有位於其上層的尺度所含有的信息.(2) 隨機場像素的條件獨立性.若 Xi 中像素的父節點已知,則 Xi 中的像素彼此獨立.這一性質使我們不必再 考慮平面網格中相鄰像素間的關系,而轉為研究尺度間相鄰像素(即父子節點)間的關系.(3) 設在給定 Xn 的情況下,Y 中的像素彼此獨立.(4) 可分離性.若給定任一節點 xs,則以其各子節點為根的子樹所對應的變數相互獨立. 從只有一個節點的根到和圖像大小一致的葉子節點,建立了完整的四叉樹模型,各層間的馬爾可夫鏈的因 果關系使我們可以由非迭代的推導過程快速計算出 X 的最大後驗概率或後驗邊緣概率.
編輯本段模型
完整的四叉樹模型也存在一些問題.(1) 因概率值過小,計算機的精度難以保障而出現下溢,若層次多,這一 問題更為突出.雖然可以通過取對數的方法將接近於 0 的小值轉換成大的負值,但若層次過多、概率值過小,該 方法也難以奏效,且為了這些轉換所採用的技巧又增加了不少計算量.(2) 當圖像較大而導致層次較多時,逐層 的計 算甚 為繁瑣 下 溢 現 象肯定 會出 現 , 存儲中 間變 量也 會占 用大 量空 間 , 在時 間空間 上都 有更 多的 開銷 . (3) 分層模型存在塊效應,即區域邊界可能出現跳躍,因為在該模型中,同一層隨機場中相鄰的像素不一定有同 一個父節點,同一層的相鄰像素間又沒有交互,從而可能出現邊界不連續的現象.
編輯本段MRF 模型
為了解決這些問題,我們提出一種新的分層 MRF 模型——半樹模型,其結構和圖1 5類似,仍然是四叉樹, 只 是層數比完整的四叉樹大大減少,相當於將完整的四叉樹截為兩部分,只取下面的這部分.模型最下層仍和圖像 大小一致,但最上層則不止一個節點.完整的四叉樹模型所具有的性質完全適用於半樹模型,不同點僅在於最上層,完整的樹模型從上到下構成 了完整的因果依賴性,而半樹模型的層間因果關系被截斷,該層節點的父節點及祖先均被刪去,因此該層中的各 節點不具有條件獨立性,即不滿足上述的性質 2,因而對這一層轉為考慮層內相鄰節點間的關系.半樹模型和完 整的樹模型相比,層次減少了許多,這樣,層次間的信息傳遞快了,概率值也不會因為過多層次的逐層計算而小 到出現下溢.但第 0 層帶來了新的問題,我們必須得考慮節點間的交互,才能得出正確的推導結果,也正是因為在 第 0 層考慮了相鄰節點間的影響,使得該模型的塊現象要好於完整的樹模型.對於層次數的選取,我們認為不宜多,太多則達不到簡化模型的目的,其優勢體現不出來,但也不能太少,因 為第 0 層的概率計算仍然要採用非迭代的演算法,層數少表明第 0 層的節點數仍較多,計算費時,所以在實驗中將 層數取為完整層次數的一半或一半稍少.
編輯本段MPM 演算法
3半樹模型的 MPM 演算法 圖像分割即已知觀測圖像 y,估計 X 的配置,採用貝葉斯估計器,可由一個優化問題來表示: ?x = arg min [E C ( x, x )′ | Y = y] ,x其中代價函數 C 給出了真實配置為 x 而實際分割結果為 x′時的代價.在已知 y 的情況下,最小化這一代價的期 望,從而得到最佳的分割.代價函數取法不同得到了不同的估計器,若 C(x,x′)=1?δ(x,x′)(當 x=x′時δ(x,x′)=1,否則 δ(x,x′)=0)得到的是 MAP 估計器,它意味著 x 和 x′只要在一個像素處有不同,則代價為 1,對誤分類的懲罰比較重,汪西莉 等:一種分層馬爾可夫圖像模型及其推導演算法 而在實際中存在一些誤分類是完全允許的.若將半樹模型的 MPM 演算法記為 HT-MPM,它分為向上演算法和向下演算法兩步,向上演算法自下而上根據式(2)、 式 (3)逐層計 算P(yd(s)|xs)和 P(xs,xρ(s)|yd(s)), 對最下層 P(yd(s)|xs)=P(ys|xs). 向下演算法自上 而下根據 式 (1)逐層計算 P(xs|y),對最上層由 P(x0|y)采樣 x0(1),…,x0(n),
編輯本段詳細說明
馬爾可夫鏈,因安德烈·馬爾可夫(A.A.Markov,1856-1922)得名,是數學中具有馬爾可夫性質的離散時間隨機過程。該過程中,在給定當前知識或信息的情況下,過去(即當期以前的歷史狀態)對於預測將來(即當期以後的未來狀態)是無關的。 時間和狀態都是離散的馬爾可夫過程稱為馬爾可夫鏈, 簡記為Xn = X(n),n = 1,2,3,4····。 馬爾可夫鏈是隨機變數的一個數列。這些變數的范圍,即他們所有可能取值的集合,被稱為「狀態空間」,而Xn的值則是在時間n的狀態。如果Xn + 1對於過去狀態的條件概率分布僅是Xn的一個函數,則 這里x為過程中的某個狀態。上面這個恆等式可以被看作是馬爾可夫性質。 馬爾可夫在1906年首先做出了這類過程 。而將此一般化到可數無限狀態空間是由柯爾莫果洛夫在1936年給出的。 馬爾可夫鏈與布朗運動以及遍歷假說這兩個二十世紀初期物理學重要課題是相聯系的,但馬爾可夫尋求的似乎不僅於數學動機,名義上是對於縱屬事件大數法則的擴張。 馬爾可夫鏈是滿足下面兩個假設的一種隨機過程: 1、t+l時刻系統狀態的概率分布只與t時刻的狀態有關,與t時刻以前的狀態無關; 2、從t時刻到t+l時刻的狀態轉移與t的值無關。一個馬爾可夫鏈模型可表示為=(S,P,Q),其中各元的含義如下: 1)S是系統所有可能的狀態所組成的非空的狀態集,有時也稱之為系統的狀態空間,它可以是有限的、可列的集合或任意非空集。本文中假定S是可數集(即有限或可列)。用小寫字母i,j(或Si,Sj)等來表示狀態。 2)是系統的狀態轉移概率矩陣,其中Pij表示系統在時刻t處於狀態i,在下一時刻t+l處於狀態i的概率,N是系統所有可能的狀態的個數。對於任意i∈s,有。 3)是系統的初始概率分布,qi是系統在初始時刻處於狀態i的概率,滿足。
編輯本段基本性質
馬爾可夫鏈模型的性質 馬爾可夫鏈是由一個條件分布來表示的 P(Xn + 1 | Xn) 這被稱為是隨機過程中的「轉移概率」。這有時也被稱作是「一步轉移概率」。二、三,以及更多步的轉移概率可以導自一步轉移概率和馬爾可夫性質: 同樣: 這些式子可以通過乘以轉移概率並求k−1次積分來一般化到任意的將來時間n+k。 邊際分布P(Xn)是在時間為n時的狀態的分布。初始分布為P(X0)。該過程的變化可以用以下的一個時間步幅來描述: 這是Frobenius-Perron equation的一個版本。這時可能存在一個或多個狀態分布π滿足: 其中Y只是為了便於對變數積分的一個名義。這樣的分布π被稱作是「平穩分布」(Stationary Distribution)或者「穩態分布」(Steady-state Distribution)。一個平穩分布是一個對應於特徵根為1的條件分布函數的特徵方程。 平穩分布是否存在,以及如果存在是否唯一,這是由過程的特定性質決定的。「不可約」是指每一個狀態都可來自任意的其它狀態。當存在至少一個狀態經過一個固定的時間段後連續返回,則這個過程被稱為是「周期的」。
編輯本段離散狀態
離散狀態空間中的馬爾可夫鏈模型 如果狀態空間是有限的,則轉移概率分布可以表示為一個具有(i,j)元素的矩陣,稱之為「轉移矩陣」: Pij = P(Xn + 1 = i | Xn = j) 對於一個離散狀態空間,k步轉移概率的積分即為求和,可以對轉移矩陣求k次冪來求得。就是說,如果是一步轉移矩陣,就是k步轉移後的轉移矩陣。 平穩分布是一個滿足以下方程的向量: 在此情況下,穩態分布π * 是一個對應於特徵根為1的、該轉移矩陣的特徵向量。 如果轉移矩陣不可約,並且是非周期的,則收斂到一個每一列都是不同的平穩分布π * ,並且, 獨立於初始分布π。這是由Perron-Frobenius theorem所指出的。 正的轉移矩陣(即矩陣的每一個元素都是正的)是不可約和非周期的。矩陣被稱為是一個隨機矩陣,當且僅當這是某個馬爾可夫鏈中轉移概率的矩陣。 注意:在上面的定式化中,元素(i,j)是由j轉移到i的概率。有時候一個由元素(i,j)給出的等價的定式化等於由i轉移到j的概率。在此情況下,轉移矩陣僅是這里所給出的轉移矩陣的轉置。另外,一個系統的平穩分布是由該轉移矩陣的左特徵向量給出的,而不是右特徵向量。 轉移概率獨立於過去的特殊況為熟知的Bernoulli scheme。僅有兩個可能狀態的Bernoulli scheme被熟知為貝努利過程
編輯本段現實應用
馬爾可夫鏈模型的應用
科學中的應用
馬爾可夫鏈通常用來建模排隊理論和統計學中的建模,還可作為信號模型用於熵編碼技術,如演算法編碼。馬爾可夫鏈也有眾多的生物學應用,特別是人口過程,可以幫助模擬生物人口過程的建模。隱蔽馬爾可夫模型還被用於生物信息學,用以編碼區域或基因預測。 馬爾可夫鏈最近的應用是在地理統計學(geostatistics)中。其中,馬爾可夫鏈用在基於觀察數據的二到三維離散變數的隨機模擬。這一應用類似於「克里金」地理統計學(Kriging geostatistics),被稱為是「馬爾可夫鏈地理統計學」。這一馬爾可夫鏈地理統計學方法仍在發展過程中。
人力資源中的應用
馬爾可夫鏈模型主要是分析一個人在某一階段內由一個職位調到另一個職位的可能性,即調動的概率。該模型的一個基本假設就是,過去的內部人事變動的模式和概率與未來的趨勢大體相一致。實際上,這種方法是要分析企業內部人力資源的流動趨勢和概率,如升遷、轉職、調配或離職等方面的情況,以便為內部的人力資源的調配提供依據。 它的基本思想是:通過發現過去組織人事變動的規律,以推測組織在未來人員的供給情況。馬爾可夫鏈模型通常是分幾個時期收集數據,然後再得出平均值,用這些數據代表每一種職位中人員變動的頻率,就可以推測出人員變動情況。 具體做法是:將計劃初期每一種工作的人數量與每一種工作的人員變動概率相乘,然後縱向相加,即得到組織內部未來勞動力的凈供給量。其基本表達式為: Ni(t):t時間內I類人員數量; Pji:人員從j類向I類轉移的轉移率; Vi(t):在時間(t-1,t)I類所補充的人員數。 企業人員的變動有調出、調入、平調、晉升與降級五種。表3 假設一家零售公司在1999至2000年間各類人員的變動情況。年初商店經理有12人,在當年期間平均90%的商店經理仍在商店內,10%的商店經理離職,期初36位經理助理有 11%晉升到經理,83%留在原來的職務,6%離職;如果人員的變動頻率是相對穩定的,那麼在2000年留在經理職位上有11人(12×90%),另外,經理助理中有4人(36×83%)晉升到經理職位,最後經理的總數是15人(11+4)。可以根據這一矩陣得到其他人員的供給情況,也可以計算出其後各個時期的預測結果。

3. 馬爾可夫鏈運用在股票指數模型中的局限性

挾制於技術指標

4. 什麼是齊次馬爾可夫鏈

馬爾可夫鏈

科普中國

本詞條由「科普中國」科學網路詞條編寫與應用工作項目審核
審閱專家張連明詳情

馬爾可夫鏈(Markov Chain, MC)是概率論和數理統計中具有馬爾可夫性質(Markov property)且存在於離散的指數集(index set)和狀態空間(state space)內的隨機過程(stochastic process)[1][2]。適用於連續指數集的馬爾可夫鏈被稱為馬爾可夫過程(Markov process),但有時也被視為馬爾可夫鏈的子集,即連續時間馬爾可夫鏈(Continuous-Time MC, CTMC),與離散時間馬爾可夫鏈(Discrete-Time MC, DTMC)相對應,因此馬爾可夫鏈是一個較為寬泛的概念[2]。

馬爾可夫鏈可通過轉移矩陣和轉移圖定義,除馬爾可夫性外,馬爾可夫鏈可能具有不可約性、重現性、周期性和遍歷性。一個不可約和正重現的馬爾可夫鏈是嚴格平穩的馬爾可夫鏈,擁有唯一的平穩分布。遍歷馬爾可夫鏈(ergodic MC)的極限分布收斂於其平穩分布[1]。

馬爾可夫鏈可被應用於蒙特卡羅方法中,形成馬爾可夫鏈蒙特卡羅(Markov Chain Monte Carlo, MCMC)[2][3],也被用於動力系統、化學反應、排隊論、市場行為和信息檢索的數學建模。此外作為結構最簡單的馬爾可夫模型(Markov model),一些機器學習演算法,例如隱馬爾可夫模型(Hidden Markov Model, HMM)、馬爾可夫隨機場(Markov Random Field, MRF)和馬爾可夫決策過程(Markov decision process, MDP)以馬爾可夫鏈為理論基礎[4]。

馬爾可夫鏈的命名來自俄國數學家安德雷·馬爾可夫(Андрей Андреевич Марков)以紀念其首次提出馬爾可夫鏈和對其收斂性質所做的研究。

5. 馬爾科夫鏈在經濟預測和決策中的應用

馬爾科夫鏈對經濟預測和決策是通過模型來進行的。
馬爾可夫鏈,是指數學中具有馬爾可夫性質的離散事件隨機過程。該過程中,在給定當前知識或信息的情況下,過去(即當前以前的歷史狀態)對於預測將來(即當前以後的未來狀態)是無關的。
馬爾科夫鏈是一種預測工具。適宜對很多經濟現象的描述。最為典型的就是對股票市場的分析。有人利用歷史數據預測未來股票或股市走勢,發現並不具備明顯的准確性,得出的結論是股市無規律可言。
經濟學者們用建立馬爾科夫鏈模型來進行預測和決策,一般分為三步,設定狀態,計算轉移概率矩陣,計算轉移的結果。

6. 馬爾可夫鏈是啥

回答如下
馬爾可夫鏈(英語:Markov chain),又稱離散時間馬爾可夫鏈(discrete-time Markov chain,縮寫為DTMC),因俄國數學家安德烈·馬爾可夫(俄語:Андрей Андреевич Марков)得名,為狀態空間中經過從一個狀態到另一個狀態的轉換的隨機過程。該過程要求具備「無記憶」的性質:下一狀態的概率分布只能由當前狀態決定,在時間序列中它前面的事件均與之無關。這種特定類型的「無記憶性」稱作馬爾可夫性質。

馬爾可夫鏈是一個相當常見、相當簡單的對隨機過程進行統計建模的方式。它們被應用在很多領域,從文本生成到金融建模。一個比較流行的例子是 SubredditSimulator,它使用馬爾可夫鏈自動創建整個 subreddit 的內容。總之,馬爾可夫鏈在概念上是非常直觀,並且易於理解的,不使用任何高級的統計或者數學概念就可以實現。馬爾可夫鏈是入門概率建模和數據科學技術的很好的開端。

7. 馬爾可夫鏈的現實應用

馬爾可夫鏈模型的應用 馬爾可夫鏈模型主要是分析一個人在某一階段內由一個職位調到另一個職位的可能性,即調動的概率。該模型的一個基本假設就是,過去的內部人事變動的模式和概率與未來的趨勢大體相一致。實際上,這種方法是要分析企業內部人力資源的流動趨勢和概率,如升遷、轉職、調配或離職等方面的情況,以便為內部的人力資源的調配提供依據。它的基本思想是:通過發現過去組織人事變動的規律,以推測組織在未來人員的供給情況。馬爾可夫鏈模型通常是分幾個時期收集數據,然後再得出平均值,用這些數據代表每一種職位中人員變動的頻率,就可以推測出人員變動情況。
具體做法是:將計劃初期每一種工作的人數量與每一種工作的人員變動概率相乘,然後縱向相加,即得到組織內部未來勞動力的凈供給量。其基本表達式為:
Ni(t):t時間內I類人員數量;
Pji:人員從j類向I類轉移的轉移率;
Vi(t):在時間(t-1,t)I內所補充的人員數。
企業人員的變動有調出、調入、平調、晉升與降級五種。表3 假設一家零售公司在1999至2000年間各類人員的變動情況。年初商店經理有12人,在當年期間平均90%的商店經理仍在商店內,10%的商店經理離職,期初36位經理助理有 11%晉升到經理,83%留在原來的職務,6%離職;如果人員的變動頻率是相對穩定的,那麼在2000年留在經理職位上有11人(12×90%),另外,經理助理中有4人(36×11%)晉升到經理職位,最後經理的總數是15人(11+4)。可以根據這一矩陣得到其他人員的供給情況,也可以計算出其後各個時期的預測結果。
假設的零售公司的馬爾可夫分析,見下表:

8. 簡述什麼是馬爾科鏈

馬爾可夫鏈是概率論和數理統計中具有馬爾可夫性質且存在於離散的指數集和狀態空間內的隨機過程

馬爾可夫鏈可通過轉移矩陣和轉移圖定義,除馬爾可夫性外,馬爾可夫鏈可能具有不可約性、常返性、周期性和遍歷性。一個不可約和正常返的馬爾可夫鏈是嚴格平穩的馬爾可夫鏈,擁有唯一的平穩分布。遍歷馬爾可夫鏈(ergodic MC)的極限分布收斂於其平穩分布[1]。

馬爾可夫鏈可被應用於蒙特卡羅方法中,形成馬爾可夫鏈蒙特卡羅(Markov Chain Monte Carlo, MCMC)[2-3],也被用於動力系統、化學反應、排隊論、市場行為和信息檢索的數學建模。此外作為結構最簡單的馬爾可夫模型(Markov model),一些機器學習演算法,例如隱馬爾可夫模型(Hidden Markov Model, HMM)、馬爾可夫隨機場(Markov Random Field, MRF)和馬爾可夫決策過程(Markov decision process, MDP)以馬爾可夫鏈為理論基礎[4]。

馬爾可夫鏈的命名來自俄國數學家安德雷·馬爾可夫(Андрей Андреевич Марков)以紀念其首次提出馬爾可夫鏈和對其收斂性質所做的研究

9. 什麼是馬爾可夫預測方法

馬爾可夫預測法(也叫馬爾科夫) 馬爾可夫是俄國著名的數學家。馬爾可夫預測法是以馬爾可夫的名字命名的一種特殊的市場預測方法。馬爾可夫預測法主要用於市場佔有率的預測和銷售期望利潤的預測。 一、馬爾可夫過程和馬爾可夫預測法概念 我們知道,事物的發展狀態總是隨著時間的推移而不斷變化的。在一般情況下,人們要了解事物未來的發展狀態,不但要看到事物現在的狀態,還要看到事物過去的狀態。馬爾可夫認為,還存在另外一種情況, 人們要了解事物未來的發展狀態, 只須知道事物現在的狀態,而與事物以前的狀態毫無關系。例如,A產品明年是暢銷還是滯銷, 只與今年的銷售情況有關, 而與往年的銷售情況沒有直接的關系。後者的這種情況就稱為馬爾可夫過程,前者的情況就屬於非馬爾可夫過程。 馬爾可夫過程的重要特徵是無後效性。事物第n次出現的狀態,只與其第n-1次的狀態有關,它與以前的狀態無關。舉一個通俗例子說:池塘里有三片荷葉和一隻青蛙,假設青蛙只在荷葉上跳來跳去。若現在青蛙在荷葉A上,那麼下一時刻青蛙要麼在原荷葉A上跳動,要麼跳到荷葉B上,或荷葉C上。青蛙究竟處在何種狀態上,只與當前狀態有關,而與以前位於哪一片荷葉上並無關系。這種性質,就是無後效性。 所謂「無後效性」,是指過去對未來無後效,而不是指現在對未來無後效。馬爾可夫鏈是與馬爾可夫過程緊密相關的一個概念。馬爾可夫鏈指出事物系統的狀態由過去轉變到現在, 再由現在轉變到將來,一環接一環像一根鏈條,而作為馬爾可夫鏈的動態系統將來是什麼狀態,取什麼值, 只與現在的狀態、取值有關, 而與它以前的狀態、取值無關。因此,運用馬爾可夫鏈只需要最近或現在的動態資料便可預測將來。馬爾可夫預測法就是應用馬爾可夫鏈來預測市場未來變化狀態。

閱讀全文

與馬爾科夫鏈在股票走勢的應用相關的資料

熱點內容
昂納科技股票行情 瀏覽:363
股票賬戶當日收益 瀏覽:740
東旭光電股票長期持有 瀏覽:92
股票賬戶盈利截圖工具 瀏覽:891
股票盈利會復利嗎 瀏覽:335
股票指標DMI周線使用技巧 瀏覽:433
華為員工離職後股票怎麼辦 瀏覽:75
股票下跌資金還在流入要賣嘛 瀏覽:542
拼多多有兩個股票賬戶 瀏覽:12
怎麼看一隻股票的底部籌碼 瀏覽:8
那個股票軟體文章多 瀏覽:517
合誠股份股票最新公告 瀏覽:160
香港股票00882 瀏覽:355
股票軟體最好用的指標公式 瀏覽:450
股票漲停原因統計 瀏覽:816
內蒙古銀行股票價格多少費用 瀏覽:558
06年連續漲停的股票 瀏覽:573
股票長期持有能有多少分紅 瀏覽:36
招商證券融券股票池在哪 瀏覽:448
股票重組是不是前面要加st 瀏覽:936