导航:首页 > 全球股市 > 股票时间序列的相关系数分析

股票时间序列的相关系数分析

发布时间:2023-04-04 11:18:47

❶ 时间序列分析模型——ARIMA模型

姓名:车文扬 学号:16020199006

【嵌牛导读】:什么是 ARIMA模型

【嵌牛鼻子】: ARIMA

【嵌牛提问】: ARIMA模型可以具体应用到什么地方?

【嵌牛正文】:

一、研究目的

传统的经济计量方法是以经济理论为基础来描述变量关系的模型。但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。为了解决这些问题而出现了一种用非结构方法来建立各个变量之间关系的模型,如向量自回归模型(vector autoregression,VAR)和向量误差修正模型(vector error correction model,VEC)。

在经典的回归模型中,主要是 通过回归分析来建立不同变量之间的函数关系(因果关系),以考察事物之间的联系 。本案例要讨论如何 利用时间序列 数据本身建立模型,以研究事物发展自身的规律 ,并据此对事物未来的发展做出预测。研究时间序列数据的意义:在现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。在现实中很多问题,如利率波动、收益率变化、反映股市行情的各种指数等通常都可以表达为时间序列数据,通过研究这些数据,发现这些经济变量的变化规律(对于某些变量来说,影响其发展变化的因素太多,或者是主要影响变量的数据难以收集,以至于难以建立回归模型来发现其变化发展规律,此时,时间序列分析模型就显现其优势——因为这类模型不需要建立因果关系模型,仅需要其变量本身的数据就可以建模),这样的一种建模方式就属于时间序列分析的研究范畴。而时间序列分析中,ARIMA模型是最典型最常用的一种模型。

二、ARIMA模型的原理

1、ARIMA的含义。 ARIMA包含3个部分,即AR、I、MA。AR——表示auto  regression,即自回归模型;I——表示integration,即单整阶数,时间序列模型必须是平稳性序列才能建立计量模型,ARIMA模型作为时间序列模型也不例外,因此首先要对时间序列进行单位根检验,如果是非平稳序列,就要通过差分来转化为平稳序列,经过几次差分转化为平稳序列,就称为几阶单整;MA——表示moving average,即移动平均模型。可见,ARIMA模型实际上是AR模型和MA模型的组合。

ARIMA模型与ARMA模型的区别:ARMA模型是针对平稳时间序列建立的模型。ARIMA模型是针对非平稳时间序列建模。换句话说,非平稳时间序列要建立ARMA模型,首先需要经过差分转化为平稳时间序列,然后建立ARMA模型。

2、ARIMA模型的原理。 正如前面介绍,ARIMA模型实际上是AR模型和MA模型的组合。

AR模型的形式如下:

其中:参数为常数,是阶自回归模型的系数;为自回归模型滞后阶数;是均值为0,方差为的白噪声序列。模型记做——表示阶自回归模型。

MA模型的形式如下:

其中:参数为常数;参数是阶移动平均模型的系数;为移动平均模型滞后阶数;是均值为0,方差为的白噪声序列。模型记做——表示阶移动平均模型。

ARIMA模型的形式如下:

模型记做。为自回归模型滞后阶数,为时间序列单整阶数,为阶移动平均模型滞后阶数。当时,,此时ARIMA模型退化为MA模型;当时,,ARIMA模型退化为AR模型。

3、建立ARIMA模型需要解决的3个问题。 由以上分析可知,建立一个ARIMA模型需要解决以下3个问题:

(1)将非平稳序列转化为平稳序列。

(2)确定模型的形式。即模型属于AR、MA、ARMA中的哪一种。这主要是通过 模型识别 来解决的。

(3)确定变量的滞后阶数。即和的数字。这也是通过 模型识别 完成的。

4、ARIMA模型的识别

ARIMA模型识别的工具为自相关系数(AC)和偏自相关系数(PAC)。

自相关系数: 时间序列滞后k阶的自相关系数由下式估计:

其中是序列的样本均值,这是相距k期值的相关系数。称为时间序列的自相关系数,自相关系数可以部分的刻画一个随机过程的形式。它表明序列的邻近数据之间存在多大程度的相关性。

偏自相关系数: 偏自相关系数是在给定的条件下,之间的条件相关性。其相关程度用偏自相关系数度量。在k阶滞后下估计偏自相关系数的计算公式为:

其中是在k阶滞后时的自相关系数估计值。称为偏相关是因为它度量了k期间距的相关而不考虑k-1期的相关。如果这种自相关的形式可由滞后小于k阶的自相关表示,那么偏相关在k期滞后下的值趋于0。

识别:

AR(p) 模型 的自相关系数是随着k的增加而呈现指数衰减或者震荡式的衰减,具体的衰减形式取决于AR(p)模型滞后项的系数;AR(p)模型的偏自相关系数是p阶截尾的。因此可以通过识别AR(p)模型的偏自相关系数的个数来确定AR(p)模型的阶数p。

MA(q) 模型 的自相关系数在q步以后是截尾的。MA(q)模型的偏自相关系数一定呈现出拖尾的衰减形式。

ARMA(p,q) 模型 是AR(p)模型和MA(q)模型的组合模型,因此ARMA(p,q)的自相关系数是AR(p)自相关系数和MA(q)的自相关系数的混合物。当p=0时,它具有截尾性质;当q=0时,它具有拖尾性质;当p,q都不为0,它具有拖尾性质。

通常,ARMA(p,q)过程的偏自相关系数可能在p阶滞后前有几项明显的 尖柱 ,但从p阶滞后项开始逐渐趋于0;而它的自相关系数则是在q阶滞后前有几项明显的 尖柱 ,从q阶滞后项开始逐渐趋于0。

三、数据和变量的选择

本案例选取我国实际GDP的时间序列建立ARIMA模型,样本区间为1978—2001。数据来源于国家统计局网站上各年的统计年鉴,GDP数据均通过GDP指数换算为以1978年价格计算的值。见表1:

表1:我国1978—2003年GDP(单位:亿元)

年度GDP年度GDP年度GDP

19783605.6198610132.8199446690.7

19794074198711784.7199558510.5

19804551.3198814704199668330.4

19814901.4198916466199774894.2

19825489.2199018319.5199879003.3

19836076.3199121280.4199982673.1

19847164.4199225863.7200089340.9

19858792.1199334500.7200198592.9

四、ARIMA模型的建立步骤

1、单位根检验,确定单整阶数。

由单位根检验的案例分析可知,GDP时间序列为2阶单整的。即d=2。通过2次差分,将GDP序列转化为平稳序列 。利用序列来建立ARMA模型。

2、模型识别

确定模型形式和滞后阶数,通过自相关系数(AC)和偏自相关系数(PAC)来完成识别。

首先将GDP数据输入Eviews软件,查看其二阶差分的AC和PAC。打开GDP序列窗口,点击View按钮,出现下来菜单,选择Correlogram(相关图),如图:

打开相关图对话框,选择二阶差分(2nd difference),点击OK,得到序列的AC和PAC。(也可以将GDP序列先进行二阶差分,然后在相关图中选择水平(Level))

从图中可以看出,序列的自相关系数(AC)在1阶截尾,偏自相关系数(PAC)在2阶截尾。因此判断模型为ARMA模型,且,。即:

3、建模

由以上分析可知,建立模型。首先将GDP序列进行二次差分,得到序列。然后在Workfile工作文件簿中新建一个方程对话框,采用 列表法 的方法对方程进行定义。自回归滞后项用ar表示,移动平均项用ma表示。本例中自回归项有两项,因此用ar(1)、ar(2)表示,移动平均项有一项,用ma(1)表示,如图:

点击确定,得到模型估计结果:

从拟合优度看,,模型拟合效果较好,DW统计量为2.43,各变量t统计量也通过显着性检验,模型较为理想。对残差进行检验,也是平稳的,因此判断模型建立正确。

❷ (19)时间序列分析

一)时间序列分析简介

二)季节分解法

三)专家建模法

一、时间序列分析简介

时间序列就是按时间顺序排列的一组数据序列。

时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。

时间序列分析有三个基本特点:

1)假设事物发展趋势会延伸到未来

2)预测所依据的数据具有不规则性

3)不考虑事物发展之间的因果关系

目的:通过分析序列进行合理预测,做到提前掌握未来的发展趋势,为业务决策提供依据,这也是决策科学化的前提。

并不是所有的时间序列都一定包含四种因素,如以年为单位的诗句就可能不包含季节变动因素。

四种因素通常有两种组合方式。

1)四种因素相互独立,即时间序列是四种因素直接叠加而成的,可用加法模型表示。

   Y=T+S+C+I

2)四种因素相互影响。即时间序列是四种因素相互综合的结果,可用乘法模型表示。

   Y=T*S*C*I

其中,原始时间序列值和长期趋势可用绝对数表示;

季节变动、循环变动、不规则变动可用相对数(变动百分比)表示。

二、季节分解法

当我们对一个时间序列进行预测时,应该考虑将上述四种因素从时间序列中分解出来。

为什么要分解这四种因素?

1)分解之后,能够克服其他因素的影响,仅仅考量一种因素对时间序列的影响。

2)分解之后,也可以分析他们之间的相互作用,以及他们对时间序列的综合影响。

3)当去掉这些因素后,就可以更好的进行时间序列之间的比较,从而更加客观的反映事物变化发展规律。

4)分界之后,序列可以用来建立回归模型,从而提高预测精度。

所有的时间序列都要分解这四种因素吗?

通常情况下,我们考虑进行季节因素的分解,也就是将季节变动因素从原时间序列中去除,并生成由剩余三种因素构成的序列来满足后续分析需求。

为什么只进行季节因素的分解?

1)时间序列中的长期趋势反映了事物发展规律,是重点研究的对象;

2)循环变动由于周期长,可以看做是长期趋势的反映;

3)不规则变动由于不容易测量,通常也不单独分析。

4)季节变动有时会让预测模型误判其为不规则变动,从而降低模型的预测精度

综上所述:当一个时间序列具有季节变动特征时,在预测值钱会先将季节因素进行分解。

步骤:

1、定义日期标示变量

即先将序列的时间定义好,才能分析其时间特征。

2、了解序列发展趋势

即序列图,确定乘性还是加性

3、进行季节因素分解

4、建模

5、分析结果解读

6、预测

1、定义日期标示变量

时间序列的特点就是数据根据时间点的顺序进行排列,因此分析之前,SPSS需要知道序列的时间定义,然后才能进行分析时间特征。

根据源数据的格式进行选择,并输入第一个个案的具体数值。

此时会在源文件中生成三个新的变量。

2、了解序列发展趋势

完成日期标示变量的定义之后,需要先对时间序列的变化趋势有所了解,便于选择合适的模型。即通过序列图,确定模型是乘性还是加性。

变量为”销售数据“,时间轴标签为”DATE--“,也就是我们自定义的时间。

数据销量序列图

如何根据序列图来判断模型的乘性或加性?

1)如果随着时间的推移,序列的季节波动变得越来越大,则建议使用乘法模型。

2)如果序列的季节波动能够基本维持恒定,则建议使用加法模型。

本例很明显:随着时间变化,销售数据的季节波动越来越大,那么使用乘法模型会更精确。

3、进行季节因素分解

变量为”销售数据“,且根据序列图我们知道时间序列模型为乘性。

提示您会新生成四个变量

1)ERR(误差序列)

从时间序列中移除季节因素、长期趋势、和循环变动之后留下的序列,也就是原始序列中的不规则变动构成的序列。

2)SAS(季节因素校正后序列):是移除原始序列中的季节因素后的校正序列。

3)SAF(季节因子):是从序列中分解出的季节因素。其中的变量值根据季节周期的变动进行重复,如本例中季节周期为12个月,所以这些季节因子没12个月重复一次。

4)STC(长期趋势和循环变动趋势):这是原始序列中长期趋势和循环变动构成的序列。

如图,周期为12个月,季节因子12个月循环一次。

完成季节因素分解后的序列和原始序列之间有什么差异?

通过回执序列图的方法把原始序列和除去季节因子的三个序列(误差序列、季节因素校正后序列、长期无视和循环变动序列)进行比较。

要做四个序列图,会有四个变量

原始序列:使用变量”销售数据“;

误差序列:使用变量”ERR“;

季节因素校场后序列:使用变量”SAS“

长期趋势和循环变动序列:使用变量”STC“

蓝色线:原始序列

紫色线:长期趋势和循环变动序列

浅棕色:季节因素校正后序列

绿色线:误差序列(不规则变动)

因为误差序列数值非常小,所以长期趋势和循环变动序列(长期趋势+循环变动)与季节因素校正后序列(长期趋势+循环变动+不规则变动,即误差)能够基本重合。

在单独做”季节因子SAF“的序列图

因为是做”季节因子“的序列图,所以只有一个变量”季节因子SAF“

我们看出:季节因素的周期是12个月,先下降,然后上升到第一个顶点,再有略微的下降后,出现明显的上升趋势,到第七个月时达到峰值,然后一路下跌,直到最后一个月份有所回升,之后进入第二个循环周期。

通过对原始序列的季节分解,我们更好的掌握了原始序列所包含的时间特征,从而选用适当的模型进行预测。

三、专家建模法

时间序列的预测步骤有四步:

1)绘制时间序列图观察趋势

2)分析序列平稳性并进行平稳化

3)书剑序列建模分析

4)模型评估与预测

平稳性主要是指时间序列的所有统计性质都不会随着时间的推移而发生变化。

对于一个平稳的时间序列,具备以下特征:

1)均数和方差不随时间变化

2)自相关系数只与时间间隔有关,与所处的时间无关

自相关系数是研究序列中不同时期的相关系数,也就是对时间序列计算其当前和不同滞后期的一系列相关系数。

平稳化的方法----差分

差分就是指序列中相邻的两期数据之差。

一次差分=Yt-Yt-1

二次差分=(Yt-Yt-1)-(Yt-1-Yt-2)

具体的平稳化操作过程会有专家建模法自动处理,我们只需要哼根据模型结果独处序列经过了几阶差分即可。

时间序列分析操作:

要分析所有变量,所以选择”销售数据“

【专家建模器】--【条件】,勾选”专家建模器考虑季节性模型“

勾选”预测值“,目的是生成预测值,并保存模型

时间序列分析结果解读

该表显示了经过分析得到的最优时间序列模型及其参数,最优时间U型猎魔性为ARIMA(0,1,1)(0,1,1)

求和自回归移动平均模型ARIMA(p,d,q)(P,D,Q)

p:出去季节性变化之后的序列所滞后的p期,通常为0或1,大于1的情况很少;

d:除去季节性变化之后的序列进行了d阶差分,通常取值为0,1或2;

q:除去季节性变化之后的序列进行了q次移动平均,通常取值0或1,很少会超过2;

P,D,Q分别表示包含季节性变化的序列所做的事情。

因此本例可解读为:

对除去季节性变化的序列和包含季节性变化的序列分别进行了一阶差分和一次移动平均,综合两个模型而建立出来的时间序列模型。

该表主要通过R方或平稳R方来评估模型拟合度,以及在多个模型时,通过比较统计量找到最优模型。

由于原始变量具有季节性变动因素,所以平稳的R方更具有参考意义,等于32.1%,拟合效果一般。

该表提供了更多的统计量可以用来评估时间序列模型的拟合效果。

虽然平稳R方仅仅是32.1%,但是”杨-博克斯Q(18)“统计量的显着性P=0.706,大于0.05(此处P>0.05是期望得到的结果),所以接受原假设,认为这个序列的残差符合随机分布,同时没有离群值出现,也都反映出数据的拟合效果还可以接受。

时间序列应用预测:

未来一年是到2016年12月,手动输入即可

这是未来一年的销售趋势

如果想从全局来观察预测趋势,可以在把这一年的趋势和以前的数据连接起来

此时的变量应该是”原始的销售数量“和”2016年的预测销售数量“

也可以在表中查看具体的数值

❸ 时间序列分析介绍

姓名:车文扬 学号:16020199006

【嵌牛导读】:时间序列是什么

【嵌牛鼻子】:时间序列

【嵌牛提问】:时间序列具体应用是什么?

【嵌牛正文】:

时间序列是时间间隔不变的情况下收集的不同时间点数据集合,这些咐袜集合被分析用来了解长期发展趋势及为了预测未来。

时间序列与常见的回归问题的不同点在于:

1、时间序列是跟时间有关的;而线性回归模型的假设:观察结果是独立的在这种情况下是不成立的。

2、随着上升或者下降的趋势,更多的时间序列出现季节性趋势的形式;

常用的时间序列模型有AR模型(Autoregressive model:自回归模型)、MA模型(moving average model:滑动平均模型)、ARMA模型(Auto-Regressive and Moving Average Model:自回归滑动平均模型)和ARIMA模型(Autoregressive Integrated Moving Average Model:自回归积分滑动平均模型)等。

时间序列的预处理(使数据平稳化和随机化)

拿到一个观察值序列之后,首先要对它的平稳性和纯随机性进行检验,这两个重要的检验称为序列的预处理。根据检验的结果可以将序列分为不同的类型,对不同类型的序列我们会采用不同的分析方法。

平稳化处理

平稳 就是围绕着一个常数上下波动且波动范围有限,即有常数均值和常数方差。如果有明显的趋势或周期性,那它通常不是平稳序列。序列平稳不平稳,一般采用三种方法检验:

时序图检验

看看上面这个图,很明显的增长趋势,不平稳。

利用自相关系数和偏相关系数

自相关系数和偏相关系数的概念可参考《算法模型— 概率论基础—相关系数相关》

下面是不平稳数据的自相关和偏相关系数的一种情形。

左边第一个为自相关图(Autocorrelation),第二个偏相关图(Partial Correlation)。

平稳的序列的自相关图和偏相关图要么拖尾,要么是截尾。截尾就是在某阶之后,系数都为 0 。怎么理解呢,看上面偏相关的图,当阶数为 1 的时候,系数值还是很大, 0.914;二阶长的时候突然就变成了 0.050. 后面的值都很小,认为是趋于 0 ,这种状况就是截尾。什么是拖尾,拖尾就是有一个缓慢衰减的趋势,但是不都为 0 。

自相关图既不是拖尾也不是截尾。以上的图的自相关是一个三角对称的形式,这种趋势是单调趋势的典型图形,说明这个序列不是平稳序列。

平稳序列的自相关系数会快速衰减。

单位根检验

单位磨简喊根检验是指检验序列中是否存在单位根,如果存在单瞎野位根就是非平稳时间序列。

单位根检验:ADF是一种常用的单位根检验方法,他的原假设为序列具有单位根,即非平稳,对于一个平稳的时序数据,就需要在给定的置信水平上显着,拒绝原假设。ADF只是单位根检验的方法之一,如果想采用其他检验方法,可以安装第三方包arch,里面提供了更加全面的单位根检验方法,个人还是比较钟情ADF检验。以下为检验结果,其p值大于0.99,说明并不能拒绝原假设。

利用差分将序列数据转换为平衡序列

差分可以将数据转换为平稳序列。

一阶差分指原序列值相距一期的两个序列值之间的减法运算;k阶差分就是相距k期的两个序列值之间相减。如果一个时间序列经过差分运算后具有平稳性,则该序列为差分平稳序列,可以使用ARIMA模型进行分析。

确定不平稳后,依次进行1阶、2阶、3阶…差分,直到平稳为止。

随机化处理

对于纯随机序列,又称白噪声序列,序列的各项数值之间没有任何相关关系,序列在进行完全无序的随机波动,可以终止对该序列的分析。白噪声序列是没有信息可提取的平稳序列。对于平稳非白噪声序列,它的均值和方差是常数。通常是建立一个线性模型来拟合该序的发展,借此提取该序列的有用信息。ARMA模型是最常用的平稳序列拟合模型。

平稳时间序列建模

某个时间序列经过预处理,被判定为平稳非白噪声序列,就可以进行时间序列建模。

建模步骤:

(1)计算出该序列的自相关系数(ACF)和偏相关系数(PACF);

(2)模型识别,也称模型定阶。根据系数情况从AR§模型、MA(q)模型、ARMA(p,q)模型、ARIMA(p,d,q)模型中选择合适模型,其中p为自回归项,d为差分阶数,q为移动平均项数。

若平稳序列的偏相关函数是截尾的,而自相关函数是拖尾的,可断定序列适合AR模型;若平稳序列的偏相关函数是拖尾的,而自相关函数是截尾的,则可断定序列适合MA模型;若平稳序列的偏相关函数和自相关函数均是拖尾的,则序列适合ARMA模型。(截尾是指时间序列的自相关函数(ACF)或偏自相关函数(PACF)在某阶后均为0的性质(比如AR的PACF);拖尾是ACF或PACF并不在某阶后均为0的性质(比如AR的ACF)。)

(3)估计模型中的未知参数的值并对参数进行检验;

(4)模型检验;

(5)模型优化;

(6)模型应用:进行短期预测。

❹ SPSS-数据分析之时间序列分析

当数据与时间息息相关,常具有周期性的变化规律,此时,时间序列分析是一个很好的发现分析及预测其发展变化的统计方法,接下来简要分享统计分析软件SPSS中时间序列分析的操作。

问:什么是时间序列?

答:时间序列是时间间隔不变的情况下收集的不同时间点数据集合。

问:那时间序列分析又是什么?

答:时间序列分析是通过研究历史数据的发展变化规律来预测事物的未来发展的统计学方法。公司营业额、销售额,人口数量,股票等方面的变化预测皆可通过此统计方法。

SPSS中的操作

首先,对数据进行 预处理:

1.查看数据是否有缺失,若有,不便后续处理,则需进行替换缺失值。

转换→替换缺失值→选择新变量→输入新变量名称、选择替换缺失值方法。

2.定义日期

数据→定义日期和时间

3.平稳性检验(平稳性指的是期望不变,方差恒定,协方差不随时间改变)

检验方法:时序图检验、自相关图检验等。可通过创建时间序列实现数据的平稳化

转换→创建时间序列

结果(例:运行中位数——跨度为1,则等于原数据)

数据预处理后对数据进行分析研究——序列图、谱分析、自相关等。

1.序列图:分析→时间序列预测→序列图→根据需要选择变量、时间轴标签等。

结果(例):可观察数据的大致波动情况。

2.谱分析:分析→时间序列预测→谱分析→根据需要选择变量、图表。

结果(例)

对于周期变化的数据,主要用于侦测系统隐含的周期或者节律行为;

对于非周期的数据,主要用于揭示系统演化过程的自相关特征。

3.自相关:分析→时间序列预测→自相关→选择变量及其他。

结果:

解读:直条高低代表自相关系数的大小,横轴1-16代表自相关的阶数,上下线之间是不具有统计学意义的,偏自相关是去除自相关系数的关联性传递性之后,用偏自相关系数考察剩余的相关性是否还存在。

关于SPSS时间序列分析的简要介绍就结束啦!

END

文 | FM

❺ 时间序列分析:求理论偏自相关系数

一、自协方差和自相关系数

p阶自回归AR(p)

自协方差 r(t,s)=E[X(t)-EX(t)][X(s)-EX(s)]

自相关系数ACF=r(s,t)/[(DX(t).DX(s))^0.5]

二、平稳时间序列自协方差与自相关系数

1、平稳时间序列可以定义r(k)为时间序列的延迟k自协方差函数:

r(k)=r(t,t+k)=E[X(t)-EX(t)][X(t+k)-EX(t+k)]

2、平稳时间序列的方差册缓漏相等DX(t)=DX(t+k)=σ2,

所以DX(t)*DX(t+k)=σ2*σ2,

所以[DX(t)*DX(t+k)]^0.5=σ2

而r(0)=r(t,t)=E[X(t)-EX(t)][X(t)-EX(t)]=E[X(t)-EX(t)]^2=DX(t)=σ2

简而言之,r(0)就是自己与自己的协方差,就是方差,

所以,平稳时间序列延迟k的自相关系数ACF等于:

p(k)=r(t,t+k)/[(DX(t).DX(t+k))^0.5]=r(k)/σ2=r(k)/r(0)

3、平稳AR(p)的自相关系数具有两个显着特征:一是拖尾性;二是呈负指数衰减。

三、偏相关系数

对于一个平稳AR(p)模型,求出滞后k自相关系数p(k)时,实际上得到并不是x(t)与x(t-k)之间单纯的相关关系。因为x(t)同时还会受到中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的影响,而这k-1个随机变量又都和x(t-k)具有相关关系,所以自相关系数p(k)里实际掺州烂杂了其他变量对x(t)与x(t-k)的影响。

为了哪册能单纯测度x(t-k)对x(t)的影响,引进偏自相关系数的概念。

对于平稳时间序列{x(t)},所谓滞后k偏自相关系数指在给定中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的条件下,或者说,在剔除了中间k-1个随机变量x(t-1)、x(t-2)、……、x(t-k+1)的干扰之后,x(t-k)对x(t)影响的相关程度。用数学语言描述就是:

p[(x(t),x(t-k)]|(x(t-1),……,x(t-k+1)={E[(x(t)-Ex(t)][x(t-k)-Ex(t-k)]}/E{[x(t-k)-Ex(t-k)]^2}

这就是滞后k偏自相关系数的定义

❻ 如何快速比较股票间的相关性

股票相关性指的是多只股票的股价或收益率,在一个时段内的相关联系,通常用相关系数来表示。通常而言在股票市场中的上市公司间相同行业的相关性较高,相似行业的相关性次之,对属于完全不同行业的则相关性最低。根据现有研究成果可知,股票关联性对资本市场性风险的衡量及资产组合的构建都具有重大价值,所以股票相关性成为了个人投资者或者投资机构衡量股票市场风险以及构建资产组合的有效性的重要参考依据。相关性的性质表明,股票间的相关程度越高,其所组成的市场的系统风险越强,由股票所组成的资产组合的有效性相应的也就越差。

❼ 两个时间序列的相关系数能否反映它们之间的相似性

从概念上说基本可以。在应用学科里,斗吵分析相关系数,是很普遍的做法。

举个例子:很多金融分析,就通过做两支股票价格波动(实际上是两个时间序列)的相关,来判断他们之间的关系,这个做法在行业里非常普遍,比如基金经理,就要分析他的portfolio里各支股票之间的相关系数,来达到最大化收益(portfolio期望值)同时最小化风险(portfolio标准方差)的目的。

比如,同一板块里(比如高科技板块)的股票价格波动,经常是正相关。直接竞争行业或公司之间的股票价格波动,不少是负相关。

下面是词条里抄的:

相关系数又称线性相关系数.它是衡量变量之间线性相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。

相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。γ>0为正相关,γ<0为负相关。γ=0表示不相关;γ的绝对值越大,相关程度越高。

两个现象之间的相关程度,一般划分为四级:

如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关禅销碰越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量贺谈之间无直线关系。通常|r|大于0.8时,认为两个变量有很强的线性相关性。

❽ 时间序列分析方法

时间序列是指一组在连续时间上测得的数据,其在数学上的定义是一组向量x(t), t=0,1,2,3,...,其中t表示数据所在的时间点,x(t)是一组按时间顺序(测得)排列的随机变量。包含单个变量的时间序列称为单变量时间序列,而包含多个变量的时间序列则称为多变量。

时间序列在很多方面多有涉及到,如天气预报,每天每个小时的气温,股票走势等等,在商业方面有诸多应用,如:

下面我们将通过一个航班数据来说明如何使用已有的工具来进行时间序列数据预测。常用来处理时间序列的包有三个:

对于基于AR、MA的方法一般需要数据预处理,因此本文分为三部分:

通过简单的初步处理以及可视化可以帮助我们有效快速的了解数据的分布(以及时间序列的趋势)。

观察数据的频率直方图以及密度分布图以洞察数据结构,从下图可以看出:

使用 statsmodels 对该时间序列进行分解,以了解该时间序列数据的各个部分,每个部分都代表着一种模式类别。借用 statsmodels 序列分解我们可以看到数据的主要趋势成分、季节成分和残差成分,这与我们上面的推测相符合。

如果一个时间序列的均值和方差随着时间变化保持稳定,则可以说这个时间序列是稳定的。

大多数时间序列模型都是在平稳序列的前提下进行建模的。造成这种情况的主要原因是序列可以有许多种(复杂的)非平稳的方式,而平稳性只有一种,更加的易于分析,易于建模。

在直觉上,如果一段时间序列在某一段时间序列内具有特定的行为,那么将来很可能具有相同的行为。譬如已连续观察一个星期都是六点出太阳,那么可以推测明天也是六点出太阳,误差非常小。

而且,与非平稳序列相比,平稳序列相关的理论更加成熟且易于实现。

一般可以通过以下几种方式来检验序列的平稳性:

如果时间序列是平稳性的,那么在ACF/PACF中观测点数据与之前数据点的相关性会急剧下降。

下图中的圆锥形阴影是置信区间,区间外的数据点说明其与观测数据本身具有强烈的相关性,这种相关性并非来自于统计波动。

PACF在计算X(t)和X(t-h)的相关性的时候,挖空在(t-h,t)上所有数据点对X(t)的影响,反应的是X(t)和X(t-h)之间真实的相关性(直接相关性)。

从下图可以看出,数据点的相关性并没有急剧下降,因此该序列是非平稳的。

如果序列是平稳的,那么其滑动均值/方差会随着时间的变化保持稳定。

但是从下图我们可以看到,随着时间的推移,均值呈现明显的上升趋势,而方差也呈现出波动式上升的趋势,因此该序列是非平稳的。

一般来讲p值小于0.05我们便认为其是显着性的,可以拒绝零假设。但是这里的p值为0.99明显是非显着性的,因此接受零假设,该序列是非平稳的。

从上面的平稳性检验我们可以知道该时间序列为非平稳序列。此外,通过上面1.3部分的序列分解我们也可以看到,该序列可分解为3部分:

我们可以使用数据转换来对那些较大的数据施加更大的惩罚,如取对数、开平方根、立方根、差分等,以达到序列平稳的目的。

滑动平均后数据失去了其原来的特点(波动式上升),这样损失的信息过多,肯定是无法作为后续模型的输入的。

差分是常用的将非平稳序列转换平稳序列的方法。ARIMA中的 'I' 便是指的差分,因此ARIMA是可以对非平稳序列进行处理的,其相当于先将非平稳序列通过差分转换为平稳序列再来使用ARMA进行建模。

一般差分是用某时刻数值减去上一时刻数值来得到新序列。但这里有一点区别,我们是使用当前时刻数值来减去其对应时刻的滑动均值。

我们来看看刚刚差分的结果怎么样。

让我们稍微总结下我们刚刚的步骤:

通过上面的3步我们成功的将一个非平稳序列转换成了一个平稳序列。上面使用的是最简单的滑动均值,下面我们试试指数滑动平均怎么样。

上面是最常用的指数滑动平均的定义,但是pandas实现的指数滑动平均好像与这个有一点区别,详细区别还得去查pandas文档。

指数滑动均值的效果看起来也很差。我们使用差分+指数滑动平均再来试试吧。

在上面我们通过 取log+(指数)滑动平均+差分 已经成功将非平稳序列转换为了平稳序列。

下面我们看看,转换后的平稳序列的各个成分是什么样的。不过这里我们使用的是最简单的差分,当前时刻的值等于原始序列当前时刻的值减去原始序列中上一时刻的值,即: x'(t) = x(t) - x(t-1)。

看起来挺不错,是个平稳序列的样子。不过,还是检验一下吧。

可以看到,趋势(Trend)部分已基本被去除,但是季节性(seasonal)部分还是很明显,而ARIMA是无法对含有seasonal的序列进行建模分析的。

在一开始我们提到了3个包均可以对时间序列进行建模。

为了简便,这里 pmdarima 和 statsmodels.tsa 直接使用最好的建模方法即SARIMA,该方法在ARIMA的基础上添加了额外功能,可以拟合seasonal部分以及额外添加的数据。

在使用ARIMA(Autoregressive Integrated Moving Average)模型前,我们先简单了解下这个模型。这个模型其实可以包括三部分,分别对应着三个参数(p, d, q):

因此ARIMA模型就是将AR和MA模型结合起来然后加上差分,克服了不能处理非平稳序列的问题。但是,需要注意的是,其仍然无法对seasonal进行拟合。

下面开始使用ARIMA来拟合数据。

(1) 先分训练集和验证集。需要注意的是这里使用的原始数据来进行建模而非转换后的数据。

(2)ARIMA一阶差分建模并预测

(3)对差分结果进行还原

先手动选择几组参数,然后参数搜索找到最佳值。需要注意的是,为了避免过拟合,这里的阶数一般不太建议取太大。

可视化看看结果怎么样吧。

(6)最后,我们还能对拟合好的模型进行诊断看看结果怎么样。

我们主要关心的是确保模型的残差(resial)部分互不相关,并且呈零均值正态分布。若季节性ARIMA(SARIMA)不满足这些属性,则表明它可以进一步改善。模型诊断根据下面的几个方面来判断残差是否符合正态分布:

同样的,为了方便,我们这里使用 pmdarima 中一个可以自动搜索最佳参数的方法 auto_arima 来进行建模。

一般来说,在实际生活和生产环节中,除了季节项,趋势项,剩余项之外,通常还有节假日的效应。所以,在prophet算法里面,作者同时考虑了以上四项,即:

上式中,

更多详细Prophet算法内容可以参考 Facebook 时间序列预测算法 Prophet 的研究 。

Prophet算法就是通过拟合这几项,然后把它们累加起来得到时间序列的预测值。

Prophet提供了直观且易于调整的参数:

Prophet对输入数据有要求:

关于 Prophet 的使用例子可以参考 Prophet example notebooks

下面使用 Prophet 来进行处理数据。

参考:
Facebook 时间序列预测算法 Prophet 的研究
Prophet example notebooks
auto_arima documentation for selecting best model
数据分析技术:时间序列分析的AR/MA/ARMA/ARIMA模型体系
https://github.com/advaitsave/Introction-to-Time-Series-forecasting-Python
时间序列分析
My First Time Series Comp (Added Prophet)
Prophet官方文档: https://facebookincubator.github.io

❾ 如何计算两个股票的相关系数(correlation)(急)

计算公式为相关系数=协方差/两个项目标准差之积。
相关系数:度量两个随机变量间关联程度的量。相关系数的取值范围为(-1,+1)。当相关系数小于0时,称为负相关;大于0时,称为正相关;等于0时,称为零相关。
拓展资料:
1.协方差:如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值。 如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。
2.标准差(Standard Deviation) :标准差也称均方差(mean square error),是各数据偏离平均数的距离的平均数,它是离均差平方和平均后的方根,用σ表示。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 格雷厄姆在1949年的着作《聪明的投资者》里说过:“经验表明在大多事例中,安全依赖于收益能力,如果收益能力不充分的话,资产就会丧失大部分的名誉(或帐面)价值。”
3.相关系数是反映两种证券之间相关性的统计方法。换句话说,这个统计告诉我们一个证券与另一个证券有多密切相关。当两种证券向上或向下同向移动时,相关系数为正。当两种证券向相反方向移动时,相关系数为负。确定两种证券之间的关系对分析跨市场关系,行业/股票关系以及行业/市场关系很有用。该指标还可以帮助投资者通过识别与股市低或负相关的证券进行多样化。 解释 相关系数在-1和+1之间振荡。这不是一个动量振荡器。
4.相反,它从正相关周期移动到周期负相关。+1被认为是完美的正相关,这是罕见的。0到+1之间的任何值表示两个证券向相同的方向移动。正相关的程度可能随时间而变化。石油股和石油大部分时间呈正相关。下面的例子显示了一只石油股股价和石油价格的关系。不出所料,20日相关系数仍然大幅上涨,经常上探+75。这两种证券之间显然存在着积极的关系。一般来说,任何超过0.50的数据都表现出强烈的正相关。

❿ 数据分析之时间序列分析

顾名思义,时间序列就是按照时间顺利排列的一组数据序列。时间序列分析就是发现这组数据的变动规律并用于预测的统计技术。该技术有以下三个基本特点:

1.假设事物发展趋势会延伸到未来;

2.预测所依据的数据具有不规则性;

3.不考虑事物发展之间的因果关系。

对时间序列进行分析的最终目的,是要通过分析序列进行合理预测,做到提前掌握其未来发展趋势,以此为业务决策提供依据。

移动平均法裤裤和指数平滑法的局限

移动平均法是一种简单平滑预测技术,它的基本思想是:根据时间序列资料逐项推移,胡运简依次计算包含一定项数的序时平均值,以反映长期趋势。但这种方法不适合预测具有复杂趋势的时间序列。指数平滑法是移动平均法的改进方法,通过对历史数据的远近不同赋予不同的权重进行预测。但在实际应用中,指数平滑法的预测值通常会滞后于实际值,尤其是所预测的时间序列存在长期趋势时,这种滞后的情况更加明显。

在实际进行时间序列预测时,遇到的数据会比较复杂,所以我们需要用到更专业的预测方法来对数据进行合理预测。通常情况下一个时间序列包含四种因素,它们会通过不同的组合方式影响时间序列的发展变化。

时间序列四种因素有两种组合方式。

1.四种因素相互独立,即时间序列是由四种因素直接叠加而形成的,可用加法模型表示:

Y=T+S+C+I

2.四种因素相互影响,即时间序列是综合四种因素而形成的,可用乘法模型表示:

Y=T×S×C×I,通常遇到的时间序列都是乘法模型。其中,原始时间序列值和长期趋势可用绝对数表示,季节变动、循环变动和不规则变动则用相对数(通常是变动百分比)表示。

当我们需要对一个时间序悄键列进行预测时,需要将上述四种因素从时间序列中分解出来。原因是:

1.把因素从时间序列中分解出来后,就能克服其他因素的影响,仅考量某一种因素对时间序列的影响;

2.分解这四种因素后,也可以分析他们之间的相互作用,以及它们对时间序列的综合影响;

3.当去掉某些因素后,就可以更好地进行时间序列之间的比较,从而更加客观地反映事物变化发展规律;

4.分解这些因素后的序列可以用于建立回归模型,从而提高预测精度。

通常情况,我们会考虑进行季节因素的分解,也就是将季节变动因素从原时间序列中去除,并生成由剩余的三种因素构成的序列来满足后续分析需求。

如果时间序列图的趋势随着时间的推移,序列的季节波动变得越来越大,则建议使用乘法模型;如果序列的季节波动能够基本维持恒定,则建议使用加法模型。

时间序列的预测步骤主要分为四步:

(1)绘制时间序列图观察趋势;

(2)分析序列平稳性并进行平稳化;

(3)时间序列建模分析;

(4)模型评估与预测;

平稳性是指时间序列的所有统计性质都不会随着时间的推移而发生变化,对于一个平稳的时间序列来说,需要具有以下特征:

(1)均数和方差不随时间变化;

(2)自相关系数只与时间间隔有关,与所处的时间无关。

相关系数是用来量化变量之间的相关程度。自相关系数研究的是一个序列中不同时期的相关系数,也就是时间序列计算其当前期和不同滞后期的一系列相关系数。

目前主流的时间序列预测方法都是针对平稳的时间序列进行分析的,但是实际上,我们遇到的大多数时间序列都不平稳,所以在分析时,需要首先识别序列的平稳性,并且把不平稳的序列转换为平稳序列。一个时间序列只有被平稳化处理过,才能被控制和预测。

将时间序列平稳化的方式有很多,基础的方法是差分,因为这个方法有助于我们解读时间序列模型。差分,就是指序列中前后相邻的两期数据之差。

ARIMA模型是时间序列分析中常用的一种模型,其全称为求和自回归移动平均模型。该模型形式为:ARIMA(p,d,q)(P,D,Q)。该模型有6个参数,前3个参数(p,d,q)针对季节性变化后的序列,后三个参数(P,D,Q)主要用来描述季节性变化,两个序列是相乘的关系,因此,该模型也称为复合季节模型。

其中:p,是指移除季节性变化后的序列所滞后的p期,取值通常为0或1,大于1的情况较少;d,是指移除季节性变化后的序列进行了d阶差分,取值通常为0、1或2;q,是指移除季节性变化后的序列进行了q次移动平均,取值通常为0或1,很少会超过2。大写的P,D,Q的含义相同,只是应用在包含季节性变化的序列上。本例中,该模型可解读为,对移除季节因素的序列和包含季节因素的序列分别进行一阶差分和一次移动平均,综合两个模型而构建出的时间序列模型。

模型拟合度主要通过R平方或平稳的R平方来评估模型拟合优度,以及在比较多个模型的情况下,通过比较统计量从而找到最优模型。本例中,由于原始序列具有季节变动因素,所以,平稳的R平方则更具参考意义。该值等于32.1%,所以,该时间序列模型的拟合效果一般。

模型统计提供了更多的统计量用以评估时间序列的数据拟合效果。本例中,虽然平稳的R平方值为32.1%,但是“杨-博克斯Q(18)”统计量的显着性(P值)=0.706,大于0.05(此处的显着性(P值)>0.05是期望得到的结果),则接受原假设,认为这个序列的残差符合随机序列分布,同时也没有离群值的出现,这些也都反映出数据的拟合效果还是可以接受的。

阅读全文

与股票时间序列的相关系数分析相关的资料

热点内容
股票怎样判断主力 浏览:282
当天卖出股票资金能当天转出吗 浏览:178
手机app支持横屏看股票 浏览:615
账户只有股票怎么打新 浏览:479
大数据硬件设备股票 浏览:349
重组的股票复牌当天能买的进吗 浏览:394
昌红科技股票市值 浏览:862
行业类股票有哪些 浏览:138
公司上去之后多久员工股票可以套现 浏览:691
江西金力永磁科技有限公司股票 浏览:934
大股东有资产注入承诺的股票 浏览:104
安琪酵母股票历史数据 浏览:687
美团股票香港 浏览:654
顾地科技股票深度分析 浏览:65
退市股票重新上市后能直接交易吗 浏览:878
员工购买自己公司股票的原因 浏览:229
股票重组后会有几个涨停 浏览:310
股票资金里面的主和被是什么意思 浏览:501
怎么判断股票时间周期 浏览:107
战略家股票分析软件 浏览:838