导航:首页 > 期指持仓 > 四维时空股票软件

四维时空股票软件

发布时间:2022-04-12 02:45:08

1. 四维时空的概念介绍

四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少我们还无法感知,就如人将蚂蚁面前的一块食物拿起来,蚂蚁只当它凭空消失。
二维空间
有一位专家曾打过一个比方:让我们先假设一些生活在二维空间的扁片人,他们只有平面概念。假如要将一个二维扁片人关起来,只需要用线在他四周画一个圈即可,这样一来,在二维空间的范围内,他无论如何也走不出这个圈。
1、首先一个世界的构成必须满足两个条件:空间和时间,如果这两者之间任意一个不存在,那么这个世界就无意义,无意义也就是说不存在。
2、一个世界的物理法则是必需,世界上一切事物的运作规律都必须有一定限制,不然该事物的存在就不可能(正所谓一切事物都是相对的存在),如果按照维度空间论来说,那么位于更高维度的生命体就有可能控制时间或空间这就是不合逻辑的事。
而四维空间像爱因斯坦说的在三维空间上加一条时间轴,因为不管几维空间都离不开时间的支付,没有时间也就没有空间!时空是无法分开的,分开就没有意义了。一把尺子在三维空间里(不含时间)转动(以尺子外的某个点或线为中心),其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
四维空间就是现在的时空,使用四元数可以较为方便的理解因四维空间而产生的相对论效应,见《关于四元数的几何意义和物理应用》 。 四维空间是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》(统称“相对论”)中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又加了一条时间轴,而这条时间的轴是一条虚数值的轴。
根据爱因斯坦相对论所说:我们生活中所面对的三维空间加上时间构成所谓四维空间。由于我们在地球上所感觉到的时间很慢,所以不会明显的感觉到四维空间的存在,但一旦登上宇宙飞船或到达宇宙之中,使本身所在参照系的速度开始变快或开始接近光速时,我们能对比的找到时间的变化。如果你在时速接近光速的飞船里航行,你的生命会比在地球上的人要长很多。这里有一种势场所在,物质的能量会随着速度的改变而改变。所以时间的变化及对比是以物质的速度为参照系的。这就是时间为什么是四维空间的要素之一。 四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
在狭义相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。

2. 要四维空间的资料。具体的详细的,深一点的。

四维空间是一个时空的概念。简单来说,任何具有四维的空间都可以被称为“四维空间”。不过,日常生活所提及的“四维空间”,大多数都是指爱因斯坦在他的《广义相对论》和《狭义相对论》中提及的“四维时空”概念。根据爱因斯坦的概念,我们的宇宙是由时间和空间构成。时空的关系,是在空间的架构上比普通三维空间的长、宽、高三条轴外又多了一条时间轴,而这条时间的轴是一条虚数值的轴。
根据爱因斯坦相对论所说:我们生活中所面对的三维空间加上时间构成所谓四维空间。由于我们在地球上所感觉到的时间很慢,所以不会明显的感觉到四维空间的存在,但一旦登上宇宙飞船或到达宇宙之中,使本身所在参照系的速度开始变快或开始接近光速时,我们能对比的找到时间的变化。如果你在时速接近光速的飞船里航行,你的生命会比在地球上的人要长很多。这里有一种势场所在,物质的能量会随着速度的改变而改变。所以时间的变化及对比是以物质的速度为参照系的。这就是时间为什么是四维空间的要素之一的原因。
[编辑本段]【解析四维空间】
什么是四维?现在的说法是三维空间加上时间这一维,构成所谓的四维空间。然而,这种说法是一击即破的。为什么?
我们可以从二维来考虑。一个二维生物(如果有的话),他们考虑所谓的三维空间绝对和我们的三维空间不同——他们会把时间作为第三维,因为他们无法感受这一维的存在。同样,我们现在也走进了这个误区,把时间算做第四维。可能四维生物看到我们在宣扬这种思想时,也在为我们叹息。那么时间算不算一维?在我看来,时间应该是一维,即在多维生物本身的维度之外再加一维,构成新的N+1维空间,而且这样也有助于帮我们解决一些问题,也可以使我们对比三维维度更高的空间加深认识。
有一个更新的构想,即所有的维度都是由时间构成,没有时间,就没有空间,包括最基本的一维空间。这应该好理解,因为没有时间,空间本身的存在就没有任何意义,因为时空本身就是不能分割的整体。那么,为什么一种时间可以形成不同的维度空间?这里,我们可以把时间看成是一种可以分解的常量。时间可以分解,这一句话理解起来可能有点困难。但是,只要想通了道理也是很简单的。要明白这个道理,首先必须了解两点。第一是时空的不可分性,这一点估计大家都明白,离开了空间谈时间,或者离开了时间谈空间,都是毫无意义的。第二点是时间的多样性,这一点了解起来可能有一点麻烦。在日常生活中,我们接触到的都是时间的合成体,也就是各个分时间有机结合形成的一个总的时间体系。可能你们会觉得我是在狡辩,其实不是。只要你们换一个角度去想,一个结果,可能是几个不同的原因形成的。就拿运动来说,我们观察到的一般都是几个不同运动产生的一种运动的结合体,即合运动。关于时间,我们也可以这样去想。我们看到的时间结合体,可以是由物体运动的时间,历史时间(即经历时间)和其他的一些时间构成。而运动时间,我们又可以看成由上下运动的时间,左右运动的时间和前后运动的时间。当然,划分方法是多样的,这就构成了时间的多样性,至于如何去划分,这就要由不同的情况而定。一部分时间对应一段空间。在这个不完整的空间里,时间起到了决定性的作用。
我们之所以是三维生物,是以为这个维度的空间里只存在三维的时间。时间的不完整决定了空间的不完整。我们不能认识其他维度的空间,是因为我们不具备在那个空间里面运动的时间。时间的多样性决定的空间的多样性。同时,因为时间的不同分解方式,注定了我们的三维空间也是相对的,它可以被命名为一维,二维,甚至是任意维——完全取决于不同的分解方式。时间是决定维度的关键,同时,它也是决定低维物体高维存在方式的关键。
让我们看看科学上的说法:低维是空间上的缺陷,它们不具备在高维世界内运动的空间。关于这一点,有一个疑问,那就是我们怎么可以发现这个缺陷。我们认为的低维不存在某一个空间长度,是因为我们无法确定它有那一个长度,也就是我们现在用最好的设备也无法观察到那一个长度差。那么,将来呢?我们现在无法认证,可能将来会有人证明那个低维物体确实属于高维。因此,低维与高维并不存在所谓的空间差。那么,我们如何区别高维与低维?很简单,用时间。用时间去解释任何一个纬度空间,我们也可以认为,低维之所以比高维低级,是因为它们存在时间上的缺陷,它们无法在时间范畴内感受高维的存在。所以,我们要去了解低维或者高维,先要知道它们存在的时间范围。高维与低维之间可以实现转化,道理是很简单的,只要加入或者去掉一个时间单位就可以了。然而说起来很容易,做起来却很复杂,我们对时间的概念都是如此模糊,要想在空间范围类实现时间的转化就更困难。
对四维空间,一般人可能只是认为在长、宽、高的轴上,再加上一根时间轴,但对于其具体情况,大部分的人仍知之甚少。有一位专家曾打过一个比方:让我们先假设一些生活在二维空间的扁片人,他们只有平面概念。假如要将一个二维扁片人关起来,只消用线在他四周画一个圈即可,这样一来,在二维空间的范围内,他无论如何也走不出这个圈。现在我们这些生活在三维空间的人对其进行“干涉”。我们只需从第三个方向(即从表示高度的那跟轴的方向),将二维人从圈中取出,再放回二维空间的其他地方即可。对我们这些三维人而言,四维空间的情况就与上述解释十分类似。如果我们能克服四维空间,那么,在瞬间跨越三维空间的距离也不是不可能。
从零维空间到四维空间
——浅谈几何中的纯概念研究
(马利进 陇东学院数学系 甘肃庆阳 745000)
【摘要】
几何不一定是真实现象的描述,几何空间和自然空间并不能完全等同看待,纯概念的研究几何的发展是数学界的一个里程碑。从零维空间到三维空间,尤其是从三维空间到四维空间的发展更是几何学的的一次革命。
【关键词】
零维;一维;二维;三维;四维;n维;几何元素;点;直线;平面。
【正文】
n维空间概念,在18世纪随着分析力学的发展而有所前进。在达朗贝尔.欧拉和拉格朗日的着作中无关紧要的出现第四维的概念,达朗贝尔在《网络全书》关于维数的条目中提议把时间想象为第四维。在19世纪高于三维的几何学还是被拒绝的。麦比乌斯(karl august mobius 1790-1868)在其《重心的计算》中指出,在三维空间中两个互为镜像的图形是不能重叠的,而在四维空间中却能叠合起来。但后来他又说:这样的四维空间难于想象,所以叠合是不可能的。这种情况的出现是由于人们把几何空间与自然空间完全等同看待的结果。以至直到1860年,库摩尔(ernst eard kummer 1810-1893)还嘲弄四维几何学。但是,随着数学家逐渐引进一些没有或很少有直接物理意义的概念,例如虚数,数学家们才学会了摆脱“数学是真实现象的描述”的观念,逐渐走上纯观念的研究方式。虚数曾今是很令人费解的,因为它在自然界中没有实在性。把虚数作为直线上的一个定向距离,把复数当作平面上的一个点或向量,这种解释为后来的四元素,非欧几里得几何学,几何学中的复元素,n维几何学以及各种稀奇古怪的函数,超限数等的引进开了先河,摆脱直接为物理学服务这一观念迎来了n维几何学。
1844年格拉斯曼在四元数的启发下,作了更大的推广,发表《线性扩张》,1862年又将其修订为《扩张论》。他第一次涉及一般的n维几何的概念,他在1848年的一篇文章中说:
我的扩张的演算建立了空间理论的抽象基础,即它脱离了一切空间的直观,成为一个纯粹的数学的科学,只是在对(物理)空间作特殊应用时才构成几何学。
然而扩张演算中的定理并不单单是把几何结果翻译成抽象的语言,它们有非常一般的重要性,因为普通几何受(物理)空间的限制。格拉斯曼强调,几何学可以物理应用发展纯智力的研究。几何学从此开始割断了与物理学的联系而独自向前发展。
经过众多的学者的研究,遂于1850年以后,n维几何学逐渐被数学界接受。
以上是n维几何发展的曲折历程,以下是n维几何发展的一些具体过程。
首先,我们将点看作零维空间,直线看作一维空间,平面看作二维空间,并观察以下公设:
属于一条直线的两个点确定这条直线。 1.1
属于一条直线的两个平面确定这一条直线。(比较这个公设和公设1.1)。 1.2
属于同一个点的两条直线也属于同一个平面。(公设1.2的推论) 1.3
属于同一个平面的两条直线,也属于同一个点。 1.4
可以推断出:
1. 具有相同维数的两个空间,在某些条件下,确定另一个高一维的空间。例如:两个点(我们将它们看作两个零维空间)确定一条直线(一维空间)。属于同一个点(规定的条件)的两条直线(两个一维空间)也属于同一个平面(二维空间)。
2. 具有相同维数的两个空间,在某些条件下,也可以确定一个低一维的空间。例如:两个平面(两个二维空间)确定一条属于它们的直线(一维空间)。属于同一平面(限定的条件)的两条直线(两个一维空间)确定一个点(零维空间)。
3. 结论2没有包括这一事实,即两个平面可以确定一个高一维的空间。它只假定它们确定一条直线,这是比平面低一维的空间。这就留下了一个把我们的思想引申到高维空间的缺口。这个缺口的消除可在推论1.3“属于同一个点的两条直线也属于同一个平面”中,用几何元素直线、平面和三维空间依次的代替几何元素点、直线和平面来达到。
下面的推论是替换的结果。属于同一条直线的两个平面也属于同一个三维空间(图1)。
有了这个新的推论,我们就把与其他几何元素直接对应的几何元素——三维空间也包括了。
下一步是把对偶原理应用于这一推理,并从这些新引申的推论中得到一些固有的结论。在对偶原理将通过几何元素——平面和空间的位置交换而被应用。这时我们得到下述推论:
属于同一条直线的两个三维空间也属于同一个平面(图2)。 1.5
从推论1.5我们可以得到下述公设:
属于一个平面的两个共存的三维空间确定这一个平面。 1.6
在上述1.5和1.6的基础上,可以提出下面的看法:
1. 四维空间的几何条件是很明显的,因为维数相同的两个已知空间,只能共存于比它们高一维的空间里。例如:两条不同的共存直线(一维)位于一个平面内(二维);两个不同的共存平面(二维)(沿一直线共存)位于一个三维空间里;两个不同的共存三维空间(沿一个平面共存)位于一个四维空间里。
2. 在几何上被看作是不属于同一直线而相交于一点的两个平面,属于不同的各别的三维空间(图3)。
四维空间的概念也可以通过解析几何的手段来研究。在那里我们可以利用代数方程来表示几何概念。为了利用这个手段进行观察以导致对四维空间的理解,我们来研究三维空间体系中的三个几何元素——点、直线和平面的方程。利用笛卡尔系统表示,我们可以写出:
点的方程:ax + b = 0 (坐标系:直线上的一个点)。
直线的方程:ax + by + c = 0 (坐标系:平面上的两条正交直线)。
平面的方程:ax + by + cz + d = 0 (坐标系:三维空间的三个互相垂直的平面)。
从上面的研究我们可以看出:
所表示的每一个几何元素(或空间)的方程中的变量数目,等于这个空间的维数加1。
坐标系中的几何元素与被表示的几何空间的几何元素的维数相同。
在这个坐标系中,几何元素的数目等于被表示的空间的维数加1。在坐标系中,几何元素的这个数目是最低要求。
用来表示几何元素的坐标系,位于比它所含有的几何元素高一维的空间里。
根据上述观察,我们可以写出三维空间的下述方程。应当注意:这个方程有四个变量(x、y、z、u)。
ax + by + cz + + e = 0
现在我们可以断定:
1. 这个坐标系的几何元素有三维,即它们是三维空间。
2. 在这个坐标系中有四个三维空间。
3. 这个坐标系位于一个四维空间里。
我们对于四维空间乃至更高空间的研究,不是通过实验总结的方式,在现实中我们很难发现并推导出它们的一般规律,对于这些问题,我们可以采取一种新的研究方式。即:纯概念的研究。通过这种方式,我们可以容易的推导出这些很重要但在现实中不易想象的新内容。
【参考文献】
【1】. 《四维画法几何学》
[美]C.E.S.林德格伦, S.M.斯拉比(着)
谢申(译), 周积义(校)
清华大学出版社
【2】. 《分形的哲学漫步》
林夏水(等着)
首都师范大学出版社
【3】. 《解析几何》
(第三版)吕林根, 许子道, 等编
高等教育出版社
【4】. 《数学哲学》
[美]保罗.贝纳塞拉夫, [美]希拉里.普特南(编)
商务印书馆
[编辑本段]【时空为何是四维的】
正宗的维数研究方法通常离不开人存在原理。譬如讲,如果空间是两维的,则两维动物则不能正常消化。如果空间是四维以上,则世界就会精彩得多。如果我们是四维空间的动物,则彭加莱关于三维球的猜想则不应该是世纪难题。可惜多余三维的空间使万有引力和静电力随距离的变化比三维中更剧烈,使得小至原子核的电子,大至太阳系中的行星给到不再稳定,很快就以旋涡的方式向远处飞离或者撞到中心上。
许多人不能接受人存在原理,认为他和科学传统相违背。科学的方法是从第一原理出发,把万物甚至观察者全推出来。人存在原理却是从观察者存在的条件把宇宙推出来,他们正好处与相反的两极。
霍金认为宇宙的边界条件是他没有边界。用卡鲁查-克莱因模型论述,时空本是高维的,而我们之所以感到它是四维的,那是因为额外维都被卷去到我们无法观察到的小尺寸去,比如普朗克尺度。正如一根头发的表面虽然是二维的,但是粗看之下,只剩下头发长度那一维一样。人们称感觉到的空间为外空间,觉察不到的为内空间。时间是外空间中的一维。
在用量子宇宙学研究时空维数的济起源时,必须避免人为的调节卡鲁查-克莱因的总维数,以得到需要的外空间维数。因为人为的调节会陷入逻辑循环,这种做法是你想得到多少维的空间都能如愿。因此,可用的卡鲁查-克莱因模型其总维数必须是由第一原理推出的。十一维的超引力模型便由第一原理推出的。自然界也许存在一种所谓的超对称。
1980年弗隆德和鲁宾发现了一个十一维超引力的非常美丽的宇宙模型,期内空间是七维球,外空间是四维球。但在经典的框架中,人们无法证明不存在具有其他维数的外时空的解。
在量子宇宙学中,瞬子是宇宙创世的籽。瞬子是爱因斯塔方程和其他场方程的解,其中时间和空间坐标不能区分。十一维超引力的创生宇宙的瞬子必须是四维球和七维球空间两个因子空间的乘积。时间若包围在四维中,四维时空随后便展开演化成我们生活中的并感觉到四维的宏观宇宙,否则外时空便是七维的。
在带电荷的黑洞创生场景中,宇宙波函数要使用正确的表象,才能算出创生的概率。因为规则瞬子是非常稀罕的,所以研究一般黑洞的创生,必须引进约束引力的概念。找到正确表象不仅对于带电荷而且对于旋转黑洞的波函数至关重要。
从同一瞬子出发,在选择正确的表象后,时间在四维球中的创生概率远远大于时间在七维流形中的概率。因此,在量子宇宙学中证明了外时空必须是四维的。
[编辑本段]【物理世界的四维空间】

在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种“此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
在狭义相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
[编辑本段]【相关事件】
事件一:
1960年,在神秘的百慕大海域也发生一件怪事。 在众多旁观者面前,美国的战斗机被云吞噬,就此消失。
目击者之一H.维克多回忆说:“当时我在金德雷空军基地的人工卫星站工作。那天气候良好,空中除了一朵云之外,一片晴朗。
“五架战斗机从事训练飞行。包括我在内,很多基地人员都在观赏天空的情况,五架战斗机在离海岸800米的上空冲进一朵飘浮的白云中,拼命伸长脖子望着天空,但是它始终未再出现。
“基地顿时骚动起来。控制塔的指挥自始至终都是目击者,他也一样没有看到任何物体从云中掉到海上,雷达屏幕上也显示出本来的五架战斗机的影子,突然间地消失了一架,立即引起官方注意,而派出搜索队。
“搜索的范围是基地的海岸到800公尺外的浅滩。 “找了又找,连一个战斗机破片也没有发现。那朵白云吞噬了一架战斗机,在不知不觉中消失了……”
事件二:
1968年6月1日又出现了一件古怪的事,那天,在南美洲阿根廷首都布宜诺斯艾利斯郊外,两辆汽车正在高速公路上行驶。 一辆坐着律师毕特耳夫妇,另一辆载着他们的朋友——哥登夫妇,他们的目的地是150公里外的麦布市。 哥登夫妇一路领先,不久,汽车的暮色中到达麦布市郊,回头往后一看,毕特耳夫妇的车子不见了,他们还以为律师车子发生了故障,进城后,他俩分头打电话给沿途的村镇,又派人沿高速公路搜索。
两天过后,一无所获,哥登夫妇只好报警。 就在同一天,哥登接到墨西哥打来的长途电话,说话人竟是毕特耳律师本人。原来他们遇到了一件不可思议的奇事:
当毕特耳夫妇的车子经过雪斯哥姆市后,车子前方突然白雾笼罩,不久,车身全被白雾包围。毕特耳看表,时间是午夜12点10分,就在这时,夫妇俩忽然昏迷过去。也不知经过多少时候,他们苏醒过来,天色已经放亮,车子仍然在高速公路上行驶。 奇怪的是,路上的风光景色,以及行人的穿戴服饰,都和阿根延不同,停车一问,真叫人大吃一惊:原来他们已在墨西哥城了! 阿根延距离墨西哥最少也有6000公里,他们怎么会把车子从阿根延开到墨西哥的呢?律师先生自己也说不出个头绪来。
毕特耳夫妇赶快打电话给阿根延驻墨西哥的领事馆,要求帮忙,这时,他们两人的表针都停在12点10吩,而实际上,这天已是6月3日了。 像这种怪事,世界上已发现过多次,所以,引起了许多科学家的注意。
事件三
1934年,在美国菲拉狄尔菲亚港,有一艘满载官兵的驱逐舰,正启程远海驶去。突然,一阵波涛袭来,还没等司舵把稳方向,转瞬间,这艘船却神奇地在弗台尼亚洲东南部的诺福克海港出现了。
舰长、大副、领航、司舵和水手们个个睁大了眼睛,面面相觑,谁也不知道发生了什么事情,舰长紧蹙双眉的纳闷着菲拉狄尔菲亚港和诺福克港之间距离500多公里,在短促的时间里,怎么可能由一个港口航行到另一个港口:况且大副、领航、司舵又没失职,层层控制着这艘船,又怎么会发生这种不可思议的事情?真是莫名其妙!……
事件四
1956年5月10日,美国西部俄克拉荷马州一个叫做奥塔斯的城市里,八岁的小孩吉米正和小伙伴特姆、肯一起玩“捉强盗“的游戏。由吉米爬上附近一家人家的围墙,抓住从围墙下通过的肯。正玩在兴头上,吉米忽然大喊一声:“肯,等一下!”就从围墙上跳了下来,就在这一霎那间,吉米不见了人影,特姆和肯大吃一惊,急忙喊道:“喂!吉米!”“吉米!你藏到哪儿去啦?快出来!”
两个孩子声嘶力竭地呼唤着自己的伙伴,但是听不到任何回音,吉米仍然杳无踪影。人们听说吉米在两个同伴眼前突然失踪,顿时哄动起来。吉米的妈妈急忙和警察局报告,警方以为发生了诱拐儿童的案件,立即出动进行搜查,但是毫无结果。
一个月过去了,有一天,吉米的母亲也出乎意料地失踪了。当时由于没有人在现场,不知道她失踪时的情形。但是,连续发生两起突然失踪的事件使警方紧张起来,再次进行全面侦查,仍然一无所获。吉米母子俩为什么会去向不明,一直无人知晓。
[编辑本段]【科学家的解释】
科学家认为:地球和某种神秘世界之间,存在着一种不可捉摸的通道。通道的两边是两个不同层次的世界。研究这种现象的人,把藏在通道另一侧的神秘世界,称作“四度空间”。
宇宙是无穷无尽的,在浩瀚无涯的宇宙中,还蕴藏着无数的秘密。科学家们对“四度空间”深入探索将会揭开这“神秘世界”之谜。所谓“四度空间”的奥秘,必定在不久的将来被人类所认识。
[编辑本段]【相关资料】
一维是指一条有原点的直线,如数轴之类,意思是定下原点后,就可以用一个数字表示位置
二维是指一个平面,需要用垂直相交的轴来定位,通过两个数字表示位置
三维类推就是三个数字啦,就好像立体空间
四维通常指的是在三维立体空间上加上时间轴,用某时间点上的三维数字标志位置状态,我们应该是在四维空间中的
五维就是动态的空间叫“速度”
六维是因动产生摩擦而生“温度”
七维是因温度产生热至爆炸而生“电”
科学家们认为,三维空间模型已经是非现实的,现在宇宙学家将时间看作第四维,而第五维指的是能量无界限。根据科学家的假设,宇宙是平坦的,而这就有可能作时光旅行。

本词条对我有帮助
631

参考资料:
1.【1】. 《四维画法几何学》
2.[美]C.E.S.林德格伦, S.M.斯拉比(着)
3.谢申(译), 周积义(校)
4.清华大学出版社
5.【2】. 《分形的哲学漫步》
6.林夏水(等着)
7.首都师范大学出版社
8.【3】. 《解析几何》
9.(第三版)吕林根, 许子道, 等编
10.高等教育出版社
11.【4】. 《数学哲学》
12.[美]保罗.贝纳塞拉夫, [美]希拉里.普特南(编)
13.商务印书馆

3. 四维空间与四维时空有什么分别

我们周围的空间有3个维(上下,前后,左右)。我们可以往上下、东南西北移动,其他方向的移动只需用3个三维空间轴来表示。向下移就等于负方向地向上移,向西北移就只是向西和向北移的混合。

在物理学上时间是第四维,与三个空间维不同的是,它只有一个,而且对于目前的人类科技来说,它只会往一方向前进。
根据90年代提出的M理论(超弦理论的一种),宇宙是十一维的,由震动的平面构成的。在爱因斯坦那里,宇宙只是四维的(三维空间和一维时间),现代物理学则认为还有七维空间我们看不见。

这里有一个科学寓言来帮助我们理解高维与低维的区别:
有个射击运动员在例行训练,在标靶表面上生活的一种二维生物中的科学家观察到他们的世界每隔一定时间段,就会出现一个洞。他宣布了这个物理定律。整个上午,射击运动员都在射击,对于标靶生物来说,这是很长的历史时期,他们认为他们的科学家是正确的。遗憾的是下午射击运动员或是吃饭去了,或是把他们的世界(标靶)扔到了垃圾桶,洞再也没出现过。标靶生物于是认定那个科学家是个骗子,他们愤怒了,把科学家扔进了标靶国的垃圾桶,连同每隔一定时间必定会出现一个洞的理论。

所以,对于高维生物来说,低维世界是完全透明的,一眼即可看透,没有任何内部结构。而低维生物只能观察到高维物体在低维空间的投影,前提是高维物体在低维空间有投影。比如子弹放在弹匣里,标靶生物是观察不到的,但它确实存在,只是没有接触标靶或在上面没有投下阴影。
所以说高维生物比低维生物要“高级”得多,他们可以瞬间出现在我们世界的任何角落(当然只是投影),可以直接破坏我们世界任何物体的内部(就好像射手打靶)。它们比孙悟空要神通广大得多。

对于大尺度的四维乃至更高维空间,受限于我们自身为三维生物的原因,我们是无法观察的,也没有确凿的证据表明观测了到高维空间对三维空间的投影。所以是否存在大尺度的高维空间目前还无法证实。

4. “四维时空”和“四维空间”有怎样的区别呢

最近所有文章我都是围绕广义相对论中的“时空弯曲”概念来展示相对论核心,其中谈到了时空弯曲是能以光速c传递到远方的,这就是引力波的传递。但是不少网友仍然没明白“四维时空”和“四维空间”的区别,所以本期我就针对这个问题来重点讨论。

5. 真的存在四维空间吗

四度空间的由来
[编辑本段]
市场,是一个交易双方买入与卖出的场所。如果买卖稀少,则市场就不会活跃。商品市场中,每逢节假日,则人潮涌动。商家销售会大幅上升,价格也会随之波动;在换季时。过季商品大打折,价格下降。精明的顾客便会蜂拥而至,争相购买,商家虽然低价卖出了商品,但现金的回收又加快了资金的周转,从而进行新的循环。这是市场经济规律之一。
股票市场、期货市场,同样存在商品市场上所表现出的经济规律,价格和价值这一队即有联系又有区别的概念,构成了市场变化的基础。作为投资者,如何把握市场经济规律,是一个难题。
1984年彼得·史泰米亚(J.Peter Steidlmayer)总结了它30余年证券期货市场的成功经验,创造了一整套的分析证券、期货市场价格变化的理论--市场轮廓理论,又名四度空间。1986年,史泰米亚与奇云郭合着的《市场与市场逻辑》介绍了这一理论。
四度空间,英文Market Profile, 直译中文应该是"市场轮廓"。香港着名的图表分析专家和波浪理论大师许沂光先生大胆创新,许沂光将其介绍在《香港经济日报》上。四度空间理论在香港及内地的推广应用,许先生功不可没。

看了之后你说有没有啊
满意请采纳。

6. 什么是四度空间

四度空间的由来
市场,是一个交易双方买入与卖出的场所。如果买卖稀少,则市场就不会活跃。商品市场中,每逢节传说的四维空间假日,则人潮涌动。商家销售会大幅上升,价格也会随之波动;在换季时。过季商品大打折,价格下降。精明的顾客便会蜂拥而至,争相购买,商家虽然低价卖出了商品,但现金的回收又加快了资金的周转,从而进行新的循环。这是市场经济规律之一。 股票市场、期货市场,同样存在商品市场上所表现出的经济规律,价格和价值这一队即有联系又有区别的概念,构成了市场变化的基础。作为投资者,如何把握市场经济规律,是一个难题。 1984年彼得·史泰米亚(J.Peter Steidlmayer)总结了它30余年证券期货市场的成功经验,创造了一整套的分析证券、期货市场价格变化的理论--市场轮廓理论,又名四度空间。1986年,史泰米亚与奇云郭合着的《市场与市场逻辑》介绍了这一理论。 四度空间,英文Market Profile, 直译中文应该是"市场轮廓"。香港着名的图表分析专家和波浪理论大师许沂光先生大胆创新,许沂光将其介绍在《香港经济日报》上。四度空间理论在香港及内地的推广应用,许先生功不可没。

四度空间的理论核心
四度空间的分析方法,指出价位与价值永远出现分歧,在股票市场上,两者在大部分时间都处于不相等的地位。每日每时的股价上下浮动,都说明价格与价值的不一致性,作为一个精明的买家,最好等到价位低于价值时才买入。 从股票市场整体来分析,以上证综合指数为例,多少点是正常的,多少点是非正常的,并不是人们经常性的主观预测,而是客观规律在起作用。股票市场大部分股票价值被低估时,自然综合指数就会处于低位,如300多点,500多点时。反之,如果大部分股票价值被高估时,综合指数就会处于高位。随着国家宏观经济政策的调整,上市公司的整体盈利水平的提高,在若干年后,可能上证综合指数1500点只能算相对低位了,3000点是肯定能够看到的。 从个股的价格来分析,价格多少为偏高,多少为偏低,其标准如何判定,仔细分析一下就会明白,例如:深市的深发展(0001)股票从1996年的6元上升到 1998年的49元,而马钢股份为什么就不能涨到49元呢?归根到底,是股票的内在价值回归。当然深发展49元也偏离了当时价值,自然从49元又回到十几元钱(除权以后的价格)。 综上所述,可以得出一个结论,股票整体市场趋势,是以全部股票的综合价值为中心而上下波动的,个股的趋势,是以该股票内在价值为中心而上下移动的,当价格高于价值时,股价自然下跌,当价格低于价值时,股价自然上涨。作为某一只具体的股票,如果价格低于价值,可能早涨,也可能晚涨,但肯定会涨,这就是股价运行的规律。 四度空间理论核心,就是指出价格与价值永远出现分歧,而只有价格与价值出现分歧,才能合投资者捕捉到价格低于价值的时间和空间,去低价买入股票。 当然,价值不是一成不变的,一个上市公司今年的业绩好,并不等于明年的业绩也好。原来亏损的企业经过资产重组,也可能从丑小鸭变白天鹅。 对于股票市场来说,高抛低吸是每位股民(尤其是在二级市场上)热盼的。但是什么时候高抛,什么时候低吸,对此股民一直把握不好。影响股价的因素有许多,比如政策面、资金面、宏观经济、企业效益等,它们作用于股价,便形成围绕价值上下波动的价格。而四度空间恰恰根据市场本身发出的资讯极鲜明地显示了价值所在,在价值以上抛出,价值以下买进,从而真正做到了高抛低吸。

四度空间的公式
价格+时间=价值,这样一个简单的公式是可以经受长时间的考验,放诸四海而皆准。 四度空间公式中的"时间",有几种含义,第一,"时间"是一个常数,说明其只有通过单位时间的交易才能维持市场的正常运转,此时的时间没有特别的意义;第二,:"时间"是买卖的重要方面,也就是说,处于低于价值的价格的时间,不会太久,因此把握买入的时间,是十分重要的,可以说真正在低位的时间,是先知先觉者大胆入市的良机。对于处于相对高位价格的时间,更是极短的时间,稍一疏忽,就过去了;第三,:"时间"是一种等待,即要等待价格低于价值时间的来临,方可买入,以要等待价格高于价值的时刻而抛出,从某种意义上来说,在股市中心须学会等待,空仓中等待买入良机,满仓时等待抛出时刻。 四度空间公式中的"价格"是经常变化的,在单位时间内,价格是一变化区间,在更长的时间范围内,价格变化的区间也随之变宽,那么成交量较大的价格区间形成了价值中枢,所以四度空间的理论已经在找出价值的同时又找出了成交量较大的部分,换言之,时间+价格=成交量(价值),同时又等于价值。 四度空间公式中的"价值",是四度空间理论的核心,是解决股市、期货市场中高抛低吸的标准。高抛低吸以价值为中心,是对期货、股市的传统分析方法的一次革命。 四度空间公式中的价值。从实战的角度来分析,有两重含义,投资理念的"价值"和投机理念的"价值"。 投资理念的"价值",是指数股票市场中具体某只股票的内在价值,这个内在价值从四度空间的图形上是看不到的,它是基本分析范围的价值,例如:某一只股票的每股收益很高,但它的价格较低。投资者认为它值20元,而此时的股价却只有10元左右,如深发展,6元左右的价格是低估了,当时第一波涨到18元左右。另一种情况是预期某一只股票发展前景广阔,潜力很大,而此时价格相对较低,科技含量高的股票常常是见高价又有高价,道理就在于内在价值被低估了。 具体某一只股票的四度空间图表,最宽的部分即是价值区域,那么,每周的四度空间图表所显示出的价值区域的价值如果低于上面所讲的内在价值,那么,这个价值也是投资理念的价值,当股价上升,超过价值,这时在内在价值之上出现的四度空间图所显示的价值就具有投机的概念了。用投资理念的"价值"去选择股票,那么具体如何选择呢?从两个方面考虑:第一是绩优股,如某股票年报每股收益为0.50元,按照当时市场认可的平均市盈率来计算,如30倍市盈率。 0.50元x30=15元 也就是说,此股的内在价值是15元。如果此时其价格在15元之下,就可以低位吸纳,当然,按此方法只是大概去估计;第二是资产重组股票,或是其内在因在因素发生变化,这种股票,就不能简单地用市盈率去计算,而是要根据其内在因素去考虑,也就是有实质的内在因素去考虑。 投机理论的"价值"具体有两个意义一个是在内在价值之下,四度空间图所表示出的价值,按照这个价值去高抛低吸;另一个是在内在价值之上,四度空间图所表示出的价值,由于已经超出了内在价值,所以是投机理念的价值了。 所以,我们提倡用投资理念去选择股票,而在投机理念的价值出现时,抛掉股票,也就是用投机理念的价值去具体操作。 时间一个常数,而价位则是变数,度量变数的时间必须依据常数,即以时间作为工具。很简单,长时间内出现的价位,表示该价位交投活跃,被市场接受,可以视为价值。换言之,时间加价格等于成交量,同时亦等于价值。

如何利用四度空间理论
明白上面的公式之后,利用四度空间图自然可以找重叠价值所。然后以价值为基础实行高抛低吸的策略从中取。 利用投资理念的"价值"去选择股票,那么具体如何选择呢?从两个方面考虑:第一是绩优股,如某股票年报每股收益为0.50元,按照当时市场认可的平均市盈率来计算,如30倍市盈率。0.50元x30=15元也就是说,此股的内在价值是15元。如果此时其价格在15元之下,就可以低位吸纳,当然,按此方法只是大概去估计;第二是资产重组股票,或是其内在因素发生变化,这种股票,就不能简单地用市盈率去计算,而是要根据其内在因素去考虑,也就是有实质的内在因素去考虑。 四度空间的"何时",是指时间。每一个单位时间以30分钟为一段,也可以日为一段,并无硬性规定。所以,寻找价格低于价值的时间,是十分重要的。因为,真正远远地低于价值的价格,平常所说的最低价或低价圈,一般来说,其停留的时间是较短的,先知先觉的投资者一定传统捷足先登。 四度空间的"何价",是指单位时间内发生的价格,只考虑高低价格的区间,不考虑开盘价及收盘价。这个价格有两个含义:一是低于价值的价格;二是高于价值的价格。 四度空间的"何人",是指长线买卖者只与短线买卖者成交,长线买家与长线卖家不会直接见面。在中国股市中,长线买卖者和机构投资者、庄家有千丝万缕的联系,甚至长线买卖者就是庄家。

四度空间的四度详解
四度空间的"何时",是指时间。每一个单位时间以30分钟为一段,也以以日为一段,并无硬性规定。四度空间的四度详解笔者根据中国股市听具体情况,尤其是中小股民并不都有具备个人电脑的这种情况,认为每日为一时间段就完全可以应付市场,从中赢利了。 所以,寻找价格低于价值的时间,是十分重要的。因为,真正远远地低于价值的价格,平常所说的最低价或低价圈,一般来说,其停留的时间是较短的,先知先觉的投资者一定传统捷足先登。 四度空间的"何价",是指单位时间内发生的价格,只考虑高低价格的区间,不考虑开盘价及收盘价。这个价格有两个含义:一是低于价值的价格;二是高于价值的价格。 四度空间的"何人",是指长线买卖者只与短线买卖者成交,长线买家与长线卖家不会直接见面。在中国股市中,长线买卖者和机构投资者、庄家有千丝万缕的联系,甚至长线买卖者就是庄家。 长线买卖者一般不会在乎短线产品的涨跌,具体可分为以上两种情情况: 第一种,结合四度空间图选择价格低于价值的股票买入,这个价值是股票的内在价值,一旦买入,不到真正价值决不抛出。具体如何选择,将在后面文章中另有详述。 例如:1996年初的深发展(0001)和四川长虹(600839),当时的坐被子严重低估,价格和价值背离,从而使用权一些长线买家大量吸货,展开了长达一年多向价值回归的上升行情。 第二种,纯粹根据四度空间图来选择股票。从四度空间图中可以看出,当一只股票出现价值中枢横移不再向下移动时,而后又出现价值中枢的时候,说明价值被低估,股价开始向上运动,向价值回归。 例如邯郸钢铁,邯郸钢铁四度空间图在1999年2月1-5日,四度空间图价值中枢在7.50元---7.55元;2月8-9日由于春节休假只有两个交易日,此图意义不大,但在3月1-5日,价值中枢在7.45元探底成功之后,在3月8-12日,价值中枢明显上移到7.70元之后展开了一轮升势,注意图中单个A字。在3月8日的A字母代表长线买家出场,而使价值中枢上移。 在平衡市中,获利机会不多时长线买卖者懒于出动,市场的成交额可能低于是10%,但当市势出现变化时,长线买卖者自然转向积极,活跃程度大增,成交额可能上升至总额的60%,这也就是平常所说的有增量资金进场。 长线买卖者因为做的是长线,所以,他们可以从容地了解基本面的变化,有充分时间去分析股市,他们不在乎短的波动,只有在各方面都具备了条件,才在低于价值的价格上重拳出击,而一旦买入股票后,他们会耐心等待高点的到来,从容抛出。所以长线买卖者是股市的先知先觉者。如果中小散户掌握了长线买卖者的踪迹,则无疑是占据了主动,弥补了信息不足及研究的深度和广度。长线买卖者,从时间上来看分为两个层次:一个是战略投资者,这一类投资者往往看重的是较长时间的投资,一年、两年或者更长时间,像美国的巴菲特,投资一个企业会很长时间,再一个层次是贴近市场的阶段投资者,他们往往在市场中有明显的吸筹、拉升、派发三个阶段的踪迹,在四度空间图中,此类的长线投资者的买卖行为会暴露无遗。 短线买卖者一般是经常进出者,他们不去深入研究股票价格的内涵,而只是顺着市场走,追涨杀跌。短线买卖者是稍有赚点就抛出,价格低了点就买进,整日里买进卖出。 短线买卖者只能使价值在较窄的幅度内波动,价值波动较大幅度的变化肯定是长线买卖家所为。因此,主要掌握长线买卖家的动向,则可顺风搭车,谋取较大的利润。 四度空间的"何事",是指主动性买卖盘和被动性买卖盘,被动性买卖盘只是认为股价偏高或偏低而做出的反映,只有主动性买卖盘才是使价值移动的根本动力。可以看出,主动性买卖盘是长线买卖者所为,而被动性买卖盘是短线买卖者的具体体现。 主动性买卖盘,是指买入或卖出都是有计划的,事先有进出的策略,只有价格低于价值时,主动性买盘才会露面,当价格高于价值时,主动性卖盘必然出场,因此,主动性买卖盘是价值变化的真正动力,当主动性买盘进场后,价值区域自然上移,而当主动性卖盘出现以后,价值区域必然下降。掌握主动性买卖盘,就等于掌握了长线买卖者的脉搏,自然搭顺风船赢利就会较大。

7. 计算机图形学发展前景怎么样,现在研究领域一般都分哪些

计算机图形学是随着计算机及其外围设备而产生和发展起来的,作为计算机科学与技术学科的一个独立分支已经历了近40年的发展历程。一方面,作为一个学科,计算机图形学在图形基础算法、图形软件与图形硬件三方面取得了长足的进步,成为当代几乎所有科学和工程技术领域用来加强信息理解和传递的技术和工具。另一方面,计算机图形学的硬件和软件本身已发展成为一个巨大的产业。
1.计算机图形学活跃理论及技术
(1)分形理论及应用
分形理论是当今世界十分活跃的新理论。作为前沿学科的分形理论认为,大自然是分形构成的。大千世界,对称、均衡的对象和状态是少数和暂时的,而不对称、不均衡的对象和状态才是多数和长期的,分形几何是描述大自然的几何学。作为人类探索复杂事物的新的认知方法,分形对于一切涉及组织结构和形态发生的领域,均有实际应用意义,并在石油勘探、地震预测、城市建设、癌症研究、经济分析等方面取得了不少突破性的进展。分形的概念是美籍数学家曼德布罗特(B.B.Mandelbrot)率先提出的。1967年他在美国《科学》杂志上发表了题为《英国的海岸线有多长?》的着名论文。
??海岸线作为曲线,其特征是极不规则、极不光滑的,呈现极其蜿蜒复杂的变化。它无法用常规的、传统的几何方法描述。我们不能从形状和结构上区分这部分海岸与那部分海岸有什么本质的不同,这种几乎同样程度的不规则性和复杂性,说明海岸线在形貌上是自相似的,也就是部局形态和整体形态的相似。在没有建筑物或其他东西作为参照物时,在空中拍摄的100公里长的海岸线与放大了的10公里长海岸线的两张照片,看上去十分相似。
??曾有人提出了这样一个显然是荒谬的命题:“英国的海岸线的长度是无穷大。”其论证思路是这样的:海岸线是破碎曲折的,我们测量时总是以一定的尺度去量得某个近似值,例如,每隔100米立一个标杆,这样,我们测得的是一个近似值,是沿着一条折线计算而得出的近似值,这条折线中的每一段是一条长为100米的直线线段。如果改为每10米立一个标杆,那么实际量出的是另一条折线的长度,它的每一个片段长10米。显然,后一次量出的长度将大于前一次量出的长度。如果我们不断缩小尺度,所量出的长度将会越来越大。这样一来,海岸线的长度不就成为无穷大了吗?
??为什么会出现这样的结论呢?曼德布罗特提出了一个重要的概念:分数维,又称分维。一般来说,维数都是整数,直线线段是一维的图形,正方形是二维的图形。在数学上,把欧氏空间的几何对象连续地拉伸、压缩、扭曲,维数也不变,这就是拓扑维数。然而,这种维数观并不能解决海岸线的长度问题。曼德布罗特是这样描述一个绳球的维数的:从很远的距离观察这个绳球,可看作一点(零维);从较近的距离观察,它充满了一个球形空间(三维);再近一些,就看到了绳子(一维);再向微观深入,绳子又变成了三维的柱,三维的柱又可分解成一维的纤维。那么,介于这些观察点之间的中间状态又如何呢?显然,并没有绳球从三维对象变成一维对象的确切界限。英国的海岸线为什么测不准?因为欧氏一维测度与海岸线的维数不一致。根据曼德布罗特的计算,英国海岸线的维数为1.26。有了分维的概念,海岸线的长度就可以确定了。
??1975年,曼德布罗特发现:具有自相似性的形态广泛存在于自然界中,如连绵的山川、飘浮的云朵、岩石的断裂口、布朗粒子运动的轨迹、树冠、花菜、大脑皮层……曼德布罗特把这些部分与整体以某种方式相似的形体称为分形(Fractal),这个单词由拉丁语Frangere衍生而成,该词本身具有“破碎”、“不规则”等含义。
??曼德布罗特的研究中最精彩的部分是1980年他发现的并以他的名字命名的集合,他发现整个宇宙以一种出人意料的方式构成自相似的结构。Mandelbrot集合图形的边界处,具有无限复杂和精细的结构。在此基础上,形成了研究分形性质及其应用的科学,称为分形理论(Fractal theory)或分形几何学(Fractal geometry)。
分形的特点和理论贡献
??数学上的分形有以下几个特点:
??(1)具有无限精细的结构;
??(2)比例自相似性;
??(3)一般它的分数维大于它的拓扑维数;
??(4)可以由非常简单的方法定义,并由递归、迭代产生等。
??(1)(2)两项说明分形在结构上的内在规律性。自相似性是分形的灵魂,它使得分形的任何一个片段都包含了整个分形的信息。第(3)项说明了分形的复杂性,第(4)项则说明了分形的生成机制。
??我们把传统几何的代表欧氏几何与以分形为研究对象的分形几何做一比较,可以得到这样的结论:欧氏几何是建立在公理之上的逻辑体系,其研究的是在旋转、平移、对称变换下各种不变的量,如角度、长度、面积、体积,其适用范围主要是人造的物体;而分形由递归、迭代生成,主要适用于自然界中形态复杂的物体,分形几何不再以分离的眼光看待分形中的点、线、面,而是把它们看成一个整体。
??我们可以从分形图案的特点去理解分形几何。分形图案有一系列有趣的特点,如自相似性、对某些变换的不变性、内部结构的无限性等。此外,分形图案往往和一定的几何变换相联系,在一些变化下,图案保持不变,从任意的初始状态出发,经过若干次的几何变换,图形将固定在这个特定的分形图案上,而不再发生变化。自相似原则和迭代生成原则是分形理论的重要原则。

??分形理论发展了维数的概念。在发现分数维以前,人们习惯于将点定义为零维,直线为一维,平面为二维,空间为三维,爱因斯坦在相对论中引入时间维,就形成四维时空。对某一问题给予多方面的考虑,可建立高维空间,但都是整数维。
??分形是20世纪涌现出的新的科学思想和对世界认识的新视角。从理论上讲,它是数学思想的新发展,是人类对于维数、点集等概念的理解的深化与推广。同时它又与现实的物理世界紧密相连,成为研究混沌(Chaos)现象的重要工具。众所周知,对混沌现象的研究正是现代理论物理学的前沿和热点之一。
??由于分形的研究,人们对于随机性和确定性的辩证关系有了进一步的理解。同样对于过程和状态的联系,对于宏观和微观的联系,对于层次之间的转化,对于无限性的丰富多采,也都产生了有益的影响。
??分形理论还是非线性科学的前沿和重要分支,作为一种方法论和认识论,其启示是多方面的:一是分形整体与局部形态的相似,启发人们通过认识局部来认识整体,从有限中认识无限;二是分形揭示了介于整体与部分、有序与无序、复杂与简单之间的新形态和秩序;三是分形从特定层面揭示了世界普遍联系和统一的图景。
分形学的应用领域
??除了理论上的意义之外,在实际应用中,分形也显示了巨大的潜力,它已经在许多领域中得到有效的应用,其应用范围之广、效益之明显远远超过了十几年前的任何预测。目前大量分形方法的应用案例层出不穷。这些案例涉及的领域包括:生命过程进化,生态系统,数字编码和解码,数论,动力系统,理论物理(如流体力学和湍流) 等方面,此外,还有人利用分形学做城市规则和地震预报。
??分形技术在数据压缩中的应用是一个非常典型的例子。美国数学会会刊在1996年6月的刊物上发表了巴斯利的文章《利用分形进行图形压缩》,他把分形用于光盘制作的图形压缩中。一般来说,我们总是把一个图形作为像素的集合来加以存储和处理。一张最普通的图片也常常涉及几十万乃至上百万像素,从而占据大量的存储空间,传输速度也大大受到限制。巴斯利运用了分形中的一个重要思想:分形图案是与某种变换相联系的,我们可以把任何一个图形看作是某种变换反复迭代的产物。因此,存储一个图形,只需存储有关这些变换过程的信息,而无需存储图形的全部像素信息。只要找到这个变换过程,图形就可以准确地再现出来,而不必去存储大量的像素信息。使用这种方法,在实际的应用中,已经达到了压缩存储空间至原来1/8的效果。
??近年来,由分形理论发展起来的分形艺术(Fractal Art,FA),在表现形式和分形几何的理解等方面亦取得了突破性的进展。分形艺术是二维可视艺术,在许多方面类似于摄影。分形图像作品一般是通过计算机屏幕和打印机来展现的。分形艺术中的另一个重要部分便是分形音乐,分形音乐是由一个算法的多重迭代产生的。自相似是分形几何的本质,有人利用这一原理来建构一些带有自相似小段的合成音乐,主题在带有小调的三番五次的反复循环中重复,在节奏方面可以加上一些随机变化。我们常见的计算机屏幕保护程序,许多也是通过分形计算而得来的。
进入1990年代以来,人们开始越来越多地利用这一理论研究经济领域的一些问题,主要集中在对金融市场(如股票市场、外汇市场等)的研究。操纵者可以通过在若干时间点上的操纵使股价在微观尺度上发生所希望的变化;从时间的宏观尺度上来看,要使股价发生所希望的变化,就要求操纵者具有相当的经济实力。从分形的角度来看,股票价格具有分形特征。一方面,股价具有复杂的微观结构;另一方面,它具有对时间的标度不变性,即在不同的观测尺度下具有相似的结构,其结构是复杂和简单、不规则和有序的统一。对股价操纵者来说,要在单个时间点上影响股价并不难,即使是在大的时间尺度上影响股价也是有可能的,但是要想通过人为的操纵,在影响股价的同时,保持股价在时间的微观和宏观尺度上的一致性,在技术上就会显得非常困难。

(2) 曲面造型技术。它是计算机图形学和计算机辅助几何设计(Computer Aided Geometric Design)的一项重要内容,主要研究在计算机图象系统的环境下对曲面的表示、设计、显示和分析。它肇源于飞机、船舶的外形放样工艺,由Coons、Bezier等大师于六十年代奠定理论基础。经三十多年发展,现在它已经形成了以Bezier和B样条方法为代表的参数化特征设计和隐式代数曲面表示这两类方法为主体,以插值(Interpolation) 、拟合(Fitting) 、逼近(Approximation)这三种手段为骨架的几何理论体系。随着计算机图形显示对于真实性、实时性和交互性要求的日益增强,随着几何设计对象向着多样性、特殊性和拓扑结构复杂性靠拢的趋势的日益明显,随着图形工业和制造工业迈向一体化、集成化和网络化步伐的日益加快,随着激光测距扫描等三维数据采样技术和硬件设备的日益完善,曲面造型在近几年来得到了长足的发展。这主要表现在研究领域的急剧扩展和表示方法的开拓创新。
一.从研究领域来看,曲面造型技术已从传统的研究曲面表示、曲面求交和曲面拼接,扩充到曲面变形、曲面重建、曲面简化、曲面转换和曲面位差。
曲面变形(Deformation or Shape Blending): 传统的非均匀有理B样条(NURBS)曲面模型,仅允许调整控制顶点或权因子来局部改变曲面形状,至多利用层次细化模型在曲面特定点进行直接操作;一些简单的基于参数曲线的曲面设计方法,如扫掠法(Sweeping),蒙皮法(Skinning),旋转法和拉伸法,也仅允许调整生成曲线来改变曲面形状。计算机动画业和实体造型业迫切需要发展与曲面表示方式无关的变形方法或形状调配方法,于是产生了自由变形(FFD)法,基于弹性变形或热弹性力学等物理模型(原理)的变形法,基于求解约束的变形法,基于几何约束的变形法等曲面变形技术和基于多面体对应关系或基于图象形态学中Minkowski和操作的曲面形状调配技术。最近,笔者及其学生刘利刚首创活动局部球面坐标插值的新思想,给出了空间点集内在变量的完整数学描述,从几何内在解的角度,设计了三维多面体和自由曲面形状调配的一整套快速有效的算法,画面流畅,交互实时,对三维曲面变形的技术难题实现了突破。

曲面重建(Reconstruction):在精致的轿车车身设计或人脸-类雕塑曲面的动画制作中,常用油泥制模,再作三维型值点采样。在医学图象可视化中,也常用CT切片来得到人体脏器表面的三维数据点。从曲面上的部分采样信息来恢复原始曲面的几何模型,称为曲面重建。采样工具为:激光测距扫描器,医学成象仪,接触探测数字转换器,雷达或地震勘探仪器等。根据重建曲面的形式,它可分为函数型曲面重建和离散型曲面重建这两类。
曲面简化(Simplification):与曲面重建一样,这一研究领域目前也是国际热点之一。其基本思想在于从三维重建后的离散曲面或造型软件的输出结果(主要是三角网格)中去除冗余信息而又保证模型的准确度,以利于图形显示的实时性、数据存储的经济性和数据传输的快速性。对于多分辨率曲面模型而言,这一技术还有利于建立曲面的层次逼近模型,进行曲面的分层显示,分层传输和分层编辑。具体的曲面简化方法有:网格顶点剔除法,网格边界删除法,网格优化法,最大平面逼近多边形法以及参数化重新采样法。
曲面转换(Conversion):同一张曲面可以表为不同的数学形式,这一思想不仅具有理论意义,而且具有工业应用的现实意义。例如,NURBS这种参数有理多项式曲面虽然包括了参数多项式曲面的一切优点,但也存在着微分运算繁琐费时、积分运算无法控制误差的局限性。而在曲面拼接及物性计算中,这两种运算是不可避免的。这就提出了把一张NURBS曲面转化成近似的多项式曲面的问题。同样的要求更体现在NURBS曲面设计系统与多项式曲面设计系统之间的数据传递和无纸化生产的工艺过程中。再如,在两张参数曲面的求交运算中,如果把其中一张曲面的NURBS形式转化为隐式,就容易得到方程的数值解。近几年来,国际图形界对曲面转换的研究主要集中在以下几方面:NURBS曲面用多项式曲面来逼近的算法及收敛性;Bezier曲线曲面的隐式化及其反问题;CONSURF飞机设计系统的Ball曲线向高维的各种推广形式的比较及互化;有理Bezier曲线曲面的降阶逼近算法及误差估计;NURBS曲面在三角域上与矩形域上的互相快速转化等。
曲面位差(Offset):也称为曲面等距性,它在计算机图形及加工中有广泛应用,因而成为这几年的热门课题之一。例如,数控机床的刀具路径设计就要研究曲线的等距性。但从数学表达式容易看出,一般而言,一条平面参数曲线的等距曲线不再是有理曲线,这就越出了通用的NURBS系统的使用范围,造成了软件设计的复杂性和数值计算的不稳定。
二.从表示方法来看,以网格细分(Subdivision)为特征的离散造型与传统的连续造型相比,大有后来居上的创新之势。而且,这种曲面造型方法在生动逼真的特征动画和雕塑曲面的设计加工中如鱼得水,得到了高度的运用。
在1998年荣获奥斯卡大奖的电影作品中,有一个短片赫然在列,这就是美国着名的Pixar动画电影制片厂选送的作品"Geri's Game"。动画片描述了一个名叫Geri的老头,在公园里自己与自己下国际象棋,千方百计想取胜的诙谐故事。画面中人物和景色的造型细致生动,与故事情节浑然一体,使观众得到真正的美学享受。而这部动画片制作中的设计者,就是以上论文的作者,着名的计算机图形学家T.DeRose。DeRose在SIGGRAPH'98大会上报告的论文讲到了选用C-C细分曲面作为Geri老头特征造型模型的背景。他指出,NURBS尽管早已被国际标准组织ISO作为定义工业产品数据交换的STEP标准,在工业造型和动画制作中得到了广泛的应用,但仍然存在着局限性。单一的NURBS曲面,如其他参数曲面一样,限于表示在拓扑上等价于一张纸,一个圆柱面或一个圆环面的曲面,不能表示任意拓扑结构的曲面。为了表达特征动画中更复杂的形状,如人的头,人的手或人的服饰,我们面临着一场技术挑战。当然,我们可以用最普通的复杂光滑曲面的造型方法,例如对NURBS的修剪(Trimming)来对付。确实,目前已经存在一些商用系统,诸如Alias-Wavefront和SoftImage等可以做到这一点,但是它们至少会遭遇到以下的困难:第一,修剪是昂贵的,而且有数值误差;第二,要在曲面的接缝处保持光滑,即使是近似的平滑也是困难的,因为模型是活动的。而细分曲面有潜力克服以上两个困难,它们无须修剪,没有缝,活动模型的平滑度被自动地保证。DeRose成功地应用了C-C的细分曲面造型法,同时发明了构造光滑的变半径的轮廓线及合成物的实际技术,提出了在服饰模型中碰撞检测的有效新算法,构造了关于细分曲面的光滑因子场方法。凭借这些数学和软件基础,他形象逼真地表现了Geri老头的头壳,手指和衣服,包括茄克衫,裤子,领带和鞋子。这些都是传统的NURBS连续曲面造型所不易做到的。那么,C-C细分曲面是怎样构造的呢?它与传统的Doo-Sabin细分曲面异曲同工,都是从一个称之为控制网格(网格多半可用激光从手工模型上输入)的多面体开始,递归地计算新网格上的每个顶点,这些顶点都是原网格上某几个顶点的加权平均。如果多面体的一个面有n条边,细分一次后,这个面就会变成n个四边形。随着细分的不断进行,控制网格就被逐渐磨光,其极限状态就是一张自由曲面。它是无缝的,因而是平滑的,即使模型是活动的。这种方法显着地压缩了设计和建立一个原始模型的时间。更重要的,允许原始模型局部地精制化。这就是它优于连续曲面造型方法之处. C-C细分是基于四边形的,而Loop曲面(1987年),蝶形曲面(1990年)是基于三角形的。它们都一样受到当今图形工作者的重用。
(3)计算机辅助设计与制造(CAD/CAM)。 这是一个最广泛,最活跃的应用领域。计算机辅助设计(Computer Aided Design,CAD)是利用计算机强有力的计算功能和高效率的图形处理能力,辅助知识劳动者进行工程和产品的设计与分析,以达到理想的目的或取得创新成果的一种技术。它是综合了计算机科学与工程设计方法的最新发展而形成的一门新兴学科。计算机辅助设计技术的发展是与计算机软件、硬件技术的发展和完善,与工程设计方法的革新紧密相关的。采用计算机辅助设计已是现代工程设计的迫切需要。CAD技术目前已广泛应用于国民经济的各个方面,其主要的应用领域有以下几个方面。
1.制造业中的应用
CAD技术已在制造业中广泛应用,其中以机床、汽车、飞机、船舶、航天器等制造业应用最为广泛、深入。众所周知,一个产品的设计过程要经过概念设计、详细设计、结构分析和优化、仿真模拟等几个主要阶段。

同时,现代设计技术将并行工程的概念引入到整个设计过程中,在设计阶段就对产品整个生命周期进行综合考虑。当前先进的CAD应用系统已经将设计、绘图、分析、仿真、加工等一系列功能集成于一个系统内。现在较常用的软件有UG II、I-DEAS、CATIA、PRO/E、Euclid等CAD应用系统,这些系统主要运行在图形工作站平台上。在PC平台上运行的CAD应用软件主要有Cimatron、Solidwork、MDT、SolidEdge等。由于各种因素,目前在二维CAD系统中Autodesk公司的AutoCAD占据了相当的市场。
2.工程设计中的应用
CAD技术在工程领域中的应用有以下几个方面:
(1)建筑设计,包括方案设计、三维造型、建筑渲染图设计、平面布景、建筑构造设计、小区规划、日照分析、室内装潢等各类CAD应用软件。
(2)结构设计,包括有限元分析、结构平面设计、框/排架结构计算和分析、高层结构分析、地基及基础设计、钢结构设计与加工等。
(3)设备设计,包括水、电、暖各种设备及管道设计。
(4)城市规划、城市交通设计,如城市道路、高架、轻轨、地铁等市政工程设计。
(5)市政管线设计,如自来水、污水排放、煤气、电力、暖气、通信(包括电话、有线电视、数据通信等)各类市政管道线路设计。
(6)交通工程设计,如公路、桥梁、铁路、航空、机场、港口、码头等。
(7)水利工程设计,如大坝、水渠、河海工程等。
(8)其他工程设计和管理,如房地产开发及物业管理、工程概预算、施工过程控制与管理、旅游景点设计与布置、智能大厦设计等。
3.电气和电子电路方面的应用
CAD技术最早曾用于电路原理图和布线图的设计工作。目前,CAD技术已扩展到印刷电路板的设计(布线及元器件布局),并在集成电路、大规模集成电路和超大规模集成电路的设计制造中大显身手,并由此大大推动了微电子技术和计算及技术的发展。
4.仿真模拟和动画制作
应用CAD技术可以真实地模拟机械零件的加工处理过程、飞机起降、船舶进出港口、物体受力破坏分析、飞行训练环境、作战方针系统、事故现场重现等现象。在文化娱乐界已大量利用计算机造型仿真出逼真的现实世界中没有的原始动物、外星人以及各种场景等,并将动画和实际背景以及演员的表演天衣无缝地合在一起,在电影制作技术上大放异彩,拍制出一个个激动人心的巨片。
5.其他应用
CAD技术除了在上述领域中的应用外,在轻工、纺织、家电、服装、制鞋、医疗和医药乃至体育方面都会用到CAD技术
CAD标准化体系进一步完善;系统智能化成为又一个技术热点;集成化成为CAD技术发展的一大趋势;科学计算可视化、虚拟设计、虚拟制造技术是20世纪90年代CAD技术发展的新趋向。
经过了一阶段计算机图形学的学习,对于图形学中基本图形的生成算法有了一定的了解。深度研究图形学,需要高深的数学知识,且每一个细化的方向需要的知识也不一样。图形学是计算机科学与技术学科的活跃前沿学科,被广泛的应用到生物学、物理学、化学、天文学、地球物理学、材料科学等领域。我深深感到这门学科涉及的领域之广是惊人的,可以说博大精深。

8. 怎么样在线看四维时空股票预测学

股票预测目前比较流行,不过很遗憾没有百分百的准确。如果想学好股票,我建议你从基础的操盘教材开始看,认真学习道氏理论和K线技术。这些足够你不会输钱。祝你好运

9. 广义金融市场和狭义金融市场的区别

相对论分为广义相对论和狭义相对论
广义相对论的基本概念解释:

广义相对论是爱因斯坦继狭义相对论之后,深入研究引力理论,于1913年提出的引力场的相对论理论。这一理论完全不同于牛顿的引力论,它把引力场归结为物体周围的时空弯曲,把物体受引力作用而运动,归结为物体在弯曲时空中沿短程线的自由运动。因此,广义相对论亦称时空几何动力学,即把引力归结为时空的几何特性。

如何理解广义相对论的时空弯曲呢?这里我们借用一个模型式的比拟来加以说明。假如有两个质量很大的钢球,按牛顿的看法,它们因万有引力相互吸引,将彼此接近。而爱因斯坦的广义相对论则并不认为这两个钢球间存在吸引力。它们之所以相互靠近,是由于没有钢球出现时,周围的时空犹如一张拉平的网,现在两个钢球把这张时空网压弯了,于是两个钢球就沿着弯曲的网滚到一起来了。这就相当于因时空弯曲物体沿短程线的运动。所以,爱因斯坦的广义相对论是不存在“引力”的引力理论。

进一步说,这个理论是建立在等效原理及广义协变原理这两个基本假设之上的。等效原理是从物体的惯性质量与引力质量相等这个基本事实出发,认为引力与加速系中的惯性力等效,两者原则上是无法区分的;广义协变原理,可以认为是等效原理的一种数学表示,即认为反映物理规律的一切微分方程应当在所有参考系中保持形式不变,也可以说认为一切参考系是平等的,从而打破了狭义相对论中惯性系的特殊地位,由于参考系选择的任意性而得名为广义相对论。

我们知道,牛顿的万有引力定律认为,一切有质量的物体均相互吸引,这是一种静态的超距作用。

在广义相对论中物质产生引力场的规律由爱因斯坦场方程表示,它所反映的引力作用是动态的,以光速来传递的。

广义相对论是比牛顿引力论更一般的理论,牛顿引力论只是广义相对论的弱场近似。所谓弱场是指物体在引力场中的引力能远小于固有能,力场中,才显示出两者的差别,这时必须应用广义相对论才能正确处理引力问题。

广义相对论在1915年建立后,爱因斯坦就提出了可以从三个方面来检验其正确性,即所谓三大实验验证。这就是光线在太阳附近的偏折,水星近日点的进动以及光谱线在引力场中的频移,这些不久即为当时的实验观测所证实。以后又有人设计了雷达回波时间延迟实验,很快在更高精度上证实了广义相对论。60年代天文学上的一系列新发现:3K微波背景辐射、脉冲星、类星体、X射电源等新的天体物理观测都有力地支持了广义相对论,从而使人们对广义相对论的兴趣由冷转热。特别是应用广义相对论来研究天体物理和宇宙学,已成为物理学中的一个热门前沿。

爱因斯坦一直把广义相对论看作是自己一生中最重要的科学成果,他说过,“要是我没有发现狭义相对论,也会有别人发现的,问题已经成熟。但是我认为,广义相对论不一样。”确实,广义相对论比狭义相对论包含了更加深刻的思想,这一全新的引力理论至今仍是一个最美好的引力理论。没有大胆的革新精神和不屈不挠的毅力,没有敏锐的理论直觉能力和坚实的数学基础,是不可能建立起广义相对论的。伟大的科学家汤姆逊曾经把广义相对论称作为人类历史上最伟大的成就之一。

狭义相对论就是
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
着名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。
由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

10. 四维时空股票预测学电子版哪里下载

进我空间看看有没有啊
我空间有很多股票软件下载
免费推荐黑马

阅读全文

与四维时空股票软件相关的资料

热点内容
全是科技股票行情 浏览:297
发行债券与股票上市的案例 浏览:187
香港股票尾盘成交方式 浏览:303
电了信息板块股票 浏览:956
中原证券股票交易系统 浏览:712
股票开盘跌一下子涨停 浏览:116
哪个软件可以看股票实时k线 浏览:254
成交量对股票有什么影响 浏览:755
50块钱买股票能盈利多少 浏览:933
mt4股票行情软件 浏览:190
股票理财基金债券 浏览:845
股票财务数据分析课程 浏览:241
香港股票自我澄清表 浏览:127
中国水业集团股票实情 浏览:879
永泰能源股票什么时间复牌 浏览:968
一只股票一次最多能卖多少手 浏览:695
英皇证券股票行情分析 浏览:654
股票退出证券公司 浏览:486
今天卖股票资金如何转入银行 浏览:263
新纶科技全民股票吧 浏览:336