❶ 时间序列分析
时间序列 概念 :同一现象在不同时间上的相继观察值排列而成的数列
形式上由现象所属的时间和现象在不同时间上的观察值两部分组成
排列的时间可以是年、季度、月...
时间序列的 分类 :
1.绝对数序列:
一系列绝对数按时间顺序排列而成;最基本的表现形式;反映在不同时间上所达到的绝对水平(时期序列,一段时期内总量的排序、时点序列,某一瞬间时点上总量的排序)
2.相对数序列:一系列相对数按时间顺序排列而成
3.平均数序列:一系列平均数按时间顺序排列而成
时间序列的 编制原则 :
时间长短一致
总体范围一致
指标内容一致
计算方法和口径一致
一、时间序列的对比分析
水平分析:
1.发展水平:现象在不同时间上的观察值;说明现象在某一时间上所达到的水平;
2.平均发展水平:现象在不同时间上取值的平均数,又称序时平均;说明现象在一段时间内所达到的一般水平;(不同序列的类型选择不同的计算方法-时期、连续时点(逐日排序)、不等距时点(加权)、等距时点(不等距的特例));
#相对数:两个绝对数相除
#相对数的序时平均数:分子的平均数与分母的平均数相除
3.增长量:报告期水平与基期水平之差,说明现象在观察期内增长的绝对数量
分为逐期增长量(报告期水平与前一期水平之差)与累计增长量(报告期水平和某一固定时期水平之差)--各逐期增长量之和等于最末期的累计增长量
4.平均增长量:各逐期增长量的平均数,等于逐期增长量之和/逐期增长量个数(也就是观察值个数-1)
速度分析:
1.发展速度:报告期水平与基期水平之比,说明现象在观察期内相对的发展变化程度,
分为环比发展速度(报告期水平和前一期水平之比)与定期发展速度(报告期与某一固定时期水平之比)--各环比发展速度之积等于最末期定期发展速度;
2.增长速度(增长率):增长量与基期水平之比,说明现象的相对增长程度,
等于发展速度-1;分为环比增长速度和定基增长速度;
3.平均发展速度:观察期内各环比发展速度的平均数,说明现象在整个观察期内平均发展变化的程度(几何法算平均数)
4.平均增长速度:等于平均发展速度-1
二、时间序列的趋势分析
可以采用移动平均、最小二乘法等...
三、季节变动分析
季节变动:现象在一年内随着季节更换形成的有规律变动;各年变化强度大体相同,且没年重现;
扩展:对一年内由于社会、政治、经济、自然因素影响,形成的以一定时期为周期的有规则的重复变动;
测定目的:确定现象过去的季节变化规律,消除时间序列中的季节因素;
分析原理:将季节变动规律归纳为一种典型的季节模型;季节模型由季节指数所组成;季节指数的平均数等于100%;根据季节指数与其平均数的偏差程度测定季节变动的程度;
季节指数:1.反映季节变动的相对数;2.以全年或季资料的平均数为基础计算的;3.平均数等于100%;4.指数越远离其平均数季节变动程度越大;5.同期平均法和趋势剔除法
同期平均法:
根据原时间序列通过简单平均计算季节指数
假定时间序列没有明显的长期趋势和循环波动
步骤:1.计算同期平均数;2.计算全部数据总季的平均数;3.计算季节指数S=同期平均数/总季平均数
趋势剔除法:
先将时间序列中长期趋势予以消除,在计算季节指数
步骤:1.计算移动平均趋势值Y;2.从序列中剔除趋势值Y/T;3.按上述方法计算季节指数
四项移动平均后再进行二项移动平均(四项做年的去掉季节,二项更为稳定)
季节变动的调整:将季节变动剔除,方法是江源时间序列除以相应的季节指数
四、循环波动分析
循环波动:近乎规律性的从低到高再从高至低的周而复始的变动;不同于趋势变动,他不是朝着单一方向的持续运动,而是涨落相间的交替波动;不同于季节波动,其变化无固定规律,变动周期多在一年以上,且周期长短不一
目的是探索现象活动的规律性
测定方法:采取剩余法
计算步骤:1.先消除趋势值,求得无长期趋势数据资料;2.再消去季节变动(原始数据/季节指数),求得循环及不规则波动相对数;3.将结果移动平均,以消除不规则波动,即得循环波动值
❷ 时间序列分析方法
时间序列是指一组在连续时间上测得的数据,其在数学上的定义是一组向量x(t), t=0,1,2,3,...,其中t表示数据所在的时间点,x(t)是一组按时间顺序(测得)排列的随机变量。包含单个变量的时间序列称为单变量时间序列,而包含多个变量的时间序列则称为多变量。
时间序列在很多方面多有涉及到,如天气预报,每天每个小时的气温,股票走势等等,在商业方面有诸多应用,如:
下面我们将通过一个航班数据来说明如何使用已有的工具来进行时间序列数据预测。常用来处理时间序列的包有三个:
对于基于AR、MA的方法一般需要数据预处理,因此本文分为三部分:
通过简单的初步处理以及可视化可以帮助我们有效快速的了解数据的分布(以及时间序列的趋势)。
观察数据的频率直方图以及密度分布图以洞察数据结构,从下图可以看出:
使用 statsmodels 对该时间序列进行分解,以了解该时间序列数据的各个部分,每个部分都代表着一种模式类别。借用 statsmodels 序列分解我们可以看到数据的主要趋势成分、季节成分和残差成分,这与我们上面的推测相符合。
如果一个时间序列的均值和方差随着时间变化保持稳定,则可以说这个时间序列是稳定的。
大多数时间序列模型都是在平稳序列的前提下进行建模的。造成这种情况的主要原因是序列可以有许多种(复杂的)非平稳的方式,而平稳性只有一种,更加的易于分析,易于建模。
在直觉上,如果一段时间序列在某一段时间序列内具有特定的行为,那么将来很可能具有相同的行为。譬如已连续观察一个星期都是六点出太阳,那么可以推测明天也是六点出太阳,误差非常小。
而且,与非平稳序列相比,平稳序列相关的理论更加成熟且易于实现。
一般可以通过以下几种方式来检验序列的平稳性:
如果时间序列是平稳性的,那么在ACF/PACF中观测点数据与之前数据点的相关性会急剧下降。
下图中的圆锥形阴影是置信区间,区间外的数据点说明其与观测数据本身具有强烈的相关性,这种相关性并非来自于统计波动。
PACF在计算X(t)和X(t-h)的相关性的时候,挖空在(t-h,t)上所有数据点对X(t)的影响,反应的是X(t)和X(t-h)之间真实的相关性(直接相关性)。
从下图可以看出,数据点的相关性并没有急剧下降,因此该序列是非平稳的。
如果序列是平稳的,那么其滑动均值/方差会随着时间的变化保持稳定。
但是从下图我们可以看到,随着时间的推移,均值呈现明显的上升趋势,而方差也呈现出波动式上升的趋势,因此该序列是非平稳的。
一般来讲p值小于0.05我们便认为其是显着性的,可以拒绝零假设。但是这里的p值为0.99明显是非显着性的,因此接受零假设,该序列是非平稳的。
从上面的平稳性检验我们可以知道该时间序列为非平稳序列。此外,通过上面1.3部分的序列分解我们也可以看到,该序列可分解为3部分:
我们可以使用数据转换来对那些较大的数据施加更大的惩罚,如取对数、开平方根、立方根、差分等,以达到序列平稳的目的。
滑动平均后数据失去了其原来的特点(波动式上升),这样损失的信息过多,肯定是无法作为后续模型的输入的。
差分是常用的将非平稳序列转换平稳序列的方法。ARIMA中的 'I' 便是指的差分,因此ARIMA是可以对非平稳序列进行处理的,其相当于先将非平稳序列通过差分转换为平稳序列再来使用ARMA进行建模。
一般差分是用某时刻数值减去上一时刻数值来得到新序列。但这里有一点区别,我们是使用当前时刻数值来减去其对应时刻的滑动均值。
我们来看看刚刚差分的结果怎么样。
让我们稍微总结下我们刚刚的步骤:
通过上面的3步我们成功的将一个非平稳序列转换成了一个平稳序列。上面使用的是最简单的滑动均值,下面我们试试指数滑动平均怎么样。
上面是最常用的指数滑动平均的定义,但是pandas实现的指数滑动平均好像与这个有一点区别,详细区别还得去查pandas文档。
指数滑动均值的效果看起来也很差。我们使用差分+指数滑动平均再来试试吧。
在上面我们通过 取log+(指数)滑动平均+差分 已经成功将非平稳序列转换为了平稳序列。
下面我们看看,转换后的平稳序列的各个成分是什么样的。不过这里我们使用的是最简单的差分,当前时刻的值等于原始序列当前时刻的值减去原始序列中上一时刻的值,即: x'(t) = x(t) - x(t-1)。
看起来挺不错,是个平稳序列的样子。不过,还是检验一下吧。
可以看到,趋势(Trend)部分已基本被去除,但是季节性(seasonal)部分还是很明显,而ARIMA是无法对含有seasonal的序列进行建模分析的。
在一开始我们提到了3个包均可以对时间序列进行建模。
为了简便,这里 pmdarima 和 statsmodels.tsa 直接使用最好的建模方法即SARIMA,该方法在ARIMA的基础上添加了额外功能,可以拟合seasonal部分以及额外添加的数据。
在使用ARIMA(Autoregressive Integrated Moving Average)模型前,我们先简单了解下这个模型。这个模型其实可以包括三部分,分别对应着三个参数(p, d, q):
因此ARIMA模型就是将AR和MA模型结合起来然后加上差分,克服了不能处理非平稳序列的问题。但是,需要注意的是,其仍然无法对seasonal进行拟合。
下面开始使用ARIMA来拟合数据。
(1) 先分训练集和验证集。需要注意的是这里使用的原始数据来进行建模而非转换后的数据。
(2)ARIMA一阶差分建模并预测
(3)对差分结果进行还原
先手动选择几组参数,然后参数搜索找到最佳值。需要注意的是,为了避免过拟合,这里的阶数一般不太建议取太大。
可视化看看结果怎么样吧。
(6)最后,我们还能对拟合好的模型进行诊断看看结果怎么样。
我们主要关心的是确保模型的残差(resial)部分互不相关,并且呈零均值正态分布。若季节性ARIMA(SARIMA)不满足这些属性,则表明它可以进一步改善。模型诊断根据下面的几个方面来判断残差是否符合正态分布:
同样的,为了方便,我们这里使用 pmdarima 中一个可以自动搜索最佳参数的方法 auto_arima 来进行建模。
一般来说,在实际生活和生产环节中,除了季节项,趋势项,剩余项之外,通常还有节假日的效应。所以,在prophet算法里面,作者同时考虑了以上四项,即:
上式中,
更多详细Prophet算法内容可以参考 Facebook 时间序列预测算法 Prophet 的研究 。
Prophet算法就是通过拟合这几项,然后把它们累加起来得到时间序列的预测值。
Prophet提供了直观且易于调整的参数:
Prophet对输入数据有要求:
关于 Prophet 的使用例子可以参考 Prophet example notebooks
下面使用 Prophet 来进行处理数据。
参考:
Facebook 时间序列预测算法 Prophet 的研究
Prophet example notebooks
auto_arima documentation for selecting best model
数据分析技术:时间序列分析的AR/MA/ARMA/ARIMA模型体系
https://github.com/advaitsave/Introction-to-Time-Series-forecasting-Python
时间序列分析
My First Time Series Comp (Added Prophet)
Prophet官方文档: https://facebookincubator.github.io
❸ 请股票高手给我解释一下江恩时间序列的奥秘
一、啥时买,啥时卖?
A、什么时候买入股票
1、大盘相对低点时买入股票。一般股民想在最低点买入股票,实际上这是办不到的(即使做到也是偶然的),能做到大盘相对低点,或者说是大盘处于低位,这时入市比较安全。
2、个股价位处于低位时买入股票。
3、证券营业部里投资者已稀稀拉拉时买入股票。
B、买什么股票
1、买有稳定业绩的绩优股。买股票一定要看准股票业绩。该买的股票业绩要稳定,千万不要买业绩大起大落的股票(业绩大起大落的股票适于炒作,不适于工薪阶层投资)避免股票业绩下降,股价下降,深度套牢,难以解放。
2、买成长性好的高科技股。这个前提既是高科技又具有成长性,否则,干脆不要买。
3、与左邻右舍相比较,属于价位相对低的股票。如有几个股票行业性质相同,业绩差不多,盘子基本相同,而其中一只价位偏低,市盈率低,那么这个股票可以介入。
总之,买股票要再三考虑、分批建仓。当在大盘低迷时,某股票业绩稳定,价位低的股票就可开始分散分批建仓。
C、什么时候卖出股票
1、自己设定一个盈利点。如盈利20%出局,假如某一股票10元,该股票涨到12元多一点即可卖出。
2、自己设定一个止损点。如亏损8-10%卖出。
3、当大盘进入某一高位时,当证券市场里人头济济时,就应该卖出。
4、卖出时要果断
❹ 时间序列分析模型——ARIMA模型
姓名:车文扬 学号:16020199006
【嵌牛导读】:什么是 ARIMA模型
【嵌牛鼻子】: ARIMA
【嵌牛提问】: ARIMA模型可以具体应用到什么地方?
【嵌牛正文】:
一、研究目的
传统的经济计量方法是以经济理论为基础来描述变量关系的模型。但经济理论通常不足以对变量之间的动态联系提供一个严密的说明,而且内生变量既可以出现在方程的左端又可以出现在方程的右端使得估计和推断变得更加复杂。为了解决这些问题而出现了一种用非结构方法来建立各个变量之间关系的模型,如向量自回归模型(vector autoregression,VAR)和向量误差修正模型(vector error correction model,VEC)。
在经典的回归模型中,主要是 通过回归分析来建立不同变量之间的函数关系(因果关系),以考察事物之间的联系 。本案例要讨论如何 利用时间序列 数据本身建立模型,以研究事物发展自身的规律 ,并据此对事物未来的发展做出预测。研究时间序列数据的意义:在现实中,往往需要研究某个事物其随时间发展变化的规律。这就需要通过研究该事物过去发展的历史记录,以得到其自身发展的规律。在现实中很多问题,如利率波动、收益率变化、反映股市行情的各种指数等通常都可以表达为时间序列数据,通过研究这些数据,发现这些经济变量的变化规律(对于某些变量来说,影响其发展变化的因素太多,或者是主要影响变量的数据难以收集,以至于难以建立回归模型来发现其变化发展规律,此时,时间序列分析模型就显现其优势——因为这类模型不需要建立因果关系模型,仅需要其变量本身的数据就可以建模),这样的一种建模方式就属于时间序列分析的研究范畴。而时间序列分析中,ARIMA模型是最典型最常用的一种模型。
二、ARIMA模型的原理
1、ARIMA的含义。 ARIMA包含3个部分,即AR、I、MA。AR——表示auto regression,即自回归模型;I——表示integration,即单整阶数,时间序列模型必须是平稳性序列才能建立计量模型,ARIMA模型作为时间序列模型也不例外,因此首先要对时间序列进行单位根检验,如果是非平稳序列,就要通过差分来转化为平稳序列,经过几次差分转化为平稳序列,就称为几阶单整;MA——表示moving average,即移动平均模型。可见,ARIMA模型实际上是AR模型和MA模型的组合。
ARIMA模型与ARMA模型的区别:ARMA模型是针对平稳时间序列建立的模型。ARIMA模型是针对非平稳时间序列建模。换句话说,非平稳时间序列要建立ARMA模型,首先需要经过差分转化为平稳时间序列,然后建立ARMA模型。
2、ARIMA模型的原理。 正如前面介绍,ARIMA模型实际上是AR模型和MA模型的组合。
AR模型的形式如下:
其中:参数为常数,是阶自回归模型的系数;为自回归模型滞后阶数;是均值为0,方差为的白噪声序列。模型记做——表示阶自回归模型。
MA模型的形式如下:
其中:参数为常数;参数是阶移动平均模型的系数;为移动平均模型滞后阶数;是均值为0,方差为的白噪声序列。模型记做——表示阶移动平均模型。
ARIMA模型的形式如下:
模型记做。为自回归模型滞后阶数,为时间序列单整阶数,为阶移动平均模型滞后阶数。当时,,此时ARIMA模型退化为MA模型;当时,,ARIMA模型退化为AR模型。
3、建立ARIMA模型需要解决的3个问题。 由以上分析可知,建立一个ARIMA模型需要解决以下3个问题:
(1)将非平稳序列转化为平稳序列。
(2)确定模型的形式。即模型属于AR、MA、ARMA中的哪一种。这主要是通过 模型识别 来解决的。
(3)确定变量的滞后阶数。即和的数字。这也是通过 模型识别 完成的。
4、ARIMA模型的识别
ARIMA模型识别的工具为自相关系数(AC)和偏自相关系数(PAC)。
自相关系数: 时间序列滞后k阶的自相关系数由下式估计:
其中是序列的样本均值,这是相距k期值的相关系数。称为时间序列的自相关系数,自相关系数可以部分的刻画一个随机过程的形式。它表明序列的邻近数据之间存在多大程度的相关性。
偏自相关系数: 偏自相关系数是在给定的条件下,之间的条件相关性。其相关程度用偏自相关系数度量。在k阶滞后下估计偏自相关系数的计算公式为:
其中是在k阶滞后时的自相关系数估计值。称为偏相关是因为它度量了k期间距的相关而不考虑k-1期的相关。如果这种自相关的形式可由滞后小于k阶的自相关表示,那么偏相关在k期滞后下的值趋于0。
识别:
AR(p) 模型 的自相关系数是随着k的增加而呈现指数衰减或者震荡式的衰减,具体的衰减形式取决于AR(p)模型滞后项的系数;AR(p)模型的偏自相关系数是p阶截尾的。因此可以通过识别AR(p)模型的偏自相关系数的个数来确定AR(p)模型的阶数p。
MA(q) 模型 的自相关系数在q步以后是截尾的。MA(q)模型的偏自相关系数一定呈现出拖尾的衰减形式。
ARMA(p,q) 模型 是AR(p)模型和MA(q)模型的组合模型,因此ARMA(p,q)的自相关系数是AR(p)自相关系数和MA(q)的自相关系数的混合物。当p=0时,它具有截尾性质;当q=0时,它具有拖尾性质;当p,q都不为0,它具有拖尾性质。
通常,ARMA(p,q)过程的偏自相关系数可能在p阶滞后前有几项明显的 尖柱 ,但从p阶滞后项开始逐渐趋于0;而它的自相关系数则是在q阶滞后前有几项明显的 尖柱 ,从q阶滞后项开始逐渐趋于0。
三、数据和变量的选择
本案例选取我国实际GDP的时间序列建立ARIMA模型,样本区间为1978—2001。数据来源于国家统计局网站上各年的统计年鉴,GDP数据均通过GDP指数换算为以1978年价格计算的值。见表1:
表1:我国1978—2003年GDP(单位:亿元)
年度GDP年度GDP年度GDP
19783605.6198610132.8199446690.7
19794074198711784.7199558510.5
19804551.3198814704199668330.4
19814901.4198916466199774894.2
19825489.2199018319.5199879003.3
19836076.3199121280.4199982673.1
19847164.4199225863.7200089340.9
19858792.1199334500.7200198592.9
四、ARIMA模型的建立步骤
1、单位根检验,确定单整阶数。
由单位根检验的案例分析可知,GDP时间序列为2阶单整的。即d=2。通过2次差分,将GDP序列转化为平稳序列 。利用序列来建立ARMA模型。
2、模型识别
确定模型形式和滞后阶数,通过自相关系数(AC)和偏自相关系数(PAC)来完成识别。
首先将GDP数据输入Eviews软件,查看其二阶差分的AC和PAC。打开GDP序列窗口,点击View按钮,出现下来菜单,选择Correlogram(相关图),如图:
打开相关图对话框,选择二阶差分(2nd difference),点击OK,得到序列的AC和PAC。(也可以将GDP序列先进行二阶差分,然后在相关图中选择水平(Level))
从图中可以看出,序列的自相关系数(AC)在1阶截尾,偏自相关系数(PAC)在2阶截尾。因此判断模型为ARMA模型,且,。即:
3、建模
由以上分析可知,建立模型。首先将GDP序列进行二次差分,得到序列。然后在Workfile工作文件簿中新建一个方程对话框,采用 列表法 的方法对方程进行定义。自回归滞后项用ar表示,移动平均项用ma表示。本例中自回归项有两项,因此用ar(1)、ar(2)表示,移动平均项有一项,用ma(1)表示,如图:
点击确定,得到模型估计结果:
从拟合优度看,,模型拟合效果较好,DW统计量为2.43,各变量t统计量也通过显着性检验,模型较为理想。对残差进行检验,也是平稳的,因此判断模型建立正确。
❺ 股票指数的周数据,指的是当周最后一天的数据,还是应该为当周所有交易日的平均值
股票指数的周数据指的是当周所有交易日的数据, 不是当周所有交易日的平均值。
股市指数,简单来说,就是由证券交易所或金融服务机构编制的、表明股票行市变动的一种供参考的数字。
指数是各个股票市场涨跌的重要指标,通过观察指数,我们可以对当前整个股票市场的涨跌有直观的认识。
股票指数的编排原理对我们来说还是有点难度,我就不做过多的解释了,点击下方链接,教你快速看懂指数:新手小白必备的股市基础知识大全
一、国内常见的指数有哪些?
会对股票指数的编制方法和它的性质来进行一个分类,股票指数有这五种形式的分类:规模指数、行业指数、主题指数、风格指数和策略指数。
其中,出现频率最多的是规模指数,比如说,各位都很清楚的“沪深300”指数,说明了交易比较活跃的300家大型企业的股票在沪深市场上都具有比较好的代表性和流动性一个整体状况。
再譬如说,“上证50 ”指数也是一个规模指数,说的是上证市场规模较大的50只股票的整体情况。
行业指数它其实是某一行业整体状况的一个代表。好比“沪深300医药”就是一个行业指数,代表沪深300指数样本股中的多支医药卫生行业股票,也对该行业公司股票整体表现作出了一个反映。
像人工智能、新能源汽车等这些主题的整体状况就是通过主题指数来反映,那么还有一些相关指数“科技龙头”、“新能源车”等。
想了解更多的指数分类,可以通过下载下方的几个炒股神器来获取详细的分析:炒股的九大神器免费领取(附分享码)
二、股票指数有什么用?
从上文可以了解到,指数一般是选起了市场中可以起明显作用的股票,所以,如果我们就可以通过指数比较迅速的获得市场整体涨跌状况的信息,那么我们就能顺势看出市场热度如何,甚至可以预测未来的走势是怎么样的。具体则可以点击下面的链接,获取专业报告,学习分析的思路:最新行业研报免费分享
应答时间:2021-09-06,最新业务变化以文中链接内展示的数据为准,请点击查看
❻ 时间序列在股市有哪些应用
时间序列分析在股票市场中的应用
摘要
在现代金融浪潮的推动下,越来越多的人加入到股市,进行投资行为,以期得到丰厚的回报,这极大促进了股票市场的繁荣。而在这种投资行为的背后,越来越多的投资者逐渐意识到股市预测的重要性。
所谓股票预测是指:根据股票现在行情的发展情况地对未来股市发展方向以及涨跌程度的预测行为。这种预测行为只是基于假定的因素为既定的前提条件为基础的。但是在股票市场中,行情的变化与国家的宏观经济发展、法律法规的制定、公司的运营、股民的信心等等都有关联,因此所谓的预测难于准确预计。
时间序列分析是经济预测领域研究的重要工具之一,它描述历史数据随时间变化的规律,并用于预测经济数据。在股票市场上,时间序列预测法常用于对股票价格趋势进行预测,为投资者和股票市场管理管理方提供决策依据。
❼ 股市的原理、股票涨跌的原理是什么
影响股票涨跌的因素有很多:供求关系、上市公司的盈利能力、投资者的信心、国家政策、其他投资品种收益的高低等。一般情况下,影响股票价格变动的最主要因素是股票的供求关系。
❽ 应用计量经济学时间序列分析在股票预测上有多大的作用
作用没有想象中的大,你可以用股票的滞后变量来进行回归分析,滞后2~3期就够了,不过数据必须具体点,最好细分到每季度、每月的上证指数,还有时间上怎么也要十年左右吧!
我以前在论文附录中做过分析,数据都是自己按季度整理的,挺麻烦的呢,如果需要的话就发给你~
还有就是,我觉得写关于股票的预测方面的实际用处并不是很大,毕竟股票的影响因素太多,单单的凭借以前的走势而预期太不好了。。我自己也炒股票,就像那些macd、kdj之类的指标根本就起不到太大的作用,如果那个能预期的话,股市岂不就成了提款机了?现在你做的这个就像是那些指标一样,要知道,股市是活的,人是活的,而指标确实死的!说这么多的意思就是股市不是能简单预测的,你做的那个用处不大。。
如果你想做的话,建议换个题目,我当时的写的是对弗里德曼的货币需求理论在中国市场的分析。你可以写写货币供应量对通货膨胀的时滞性,分析下在我国市场的滞后期大概是多少~数据在国家统计局和中国人民银行都可以找到的,样本空间一定要足够大,在对滞后变量分析时候主要考虑各自的T检验是否通过,一般从通过之后大概就是那个的滞后期!这个比较直接反而有些许用处~
要是能分析出国家的一般性政策对实体市场的影响就更好了,更有用了~
呵呵,以上只是自己的建议~有什么其他的问题就给我留言吧~
❾ 什么是时间序列分析法
时间序列是按时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。时间序列分析是定量预测方法之一,它的基本原理:一是承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。二是考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。该方法方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。
❿ 如何深入理解时间序列分析中的平稳性
声明:本文中所有引用部分,如非特别说明,皆引自Time Series Analysis with Applications in R.
接触时间序列分析才半年,尽力回答。如果回答有误,欢迎指出。
对第一个问题,我们把它拆分成以下两个问题:
Why stationary?(为何要平稳?)
Why weak stationary?(为何弱平稳?)
Why stationary?(为何要平稳?)
每一个统计学问题,我们都需要对其先做一些基本假设。如在一元线性回归中(),我们要假设:①不相关且非随机(是固定值或当做已知)②独立同分布服从正态分布(均值为0,方差恒定)。
在时间序列分析中,我们考虑了很多合理且可以简化问题的假设。而其中最重要的假设就是平稳。
The basic idea of stationarity is that the probability laws that govern the behavior of the process do not change over time.
平稳的基本思想是:时间序列的行为并不随时间改变。
正因此,我们定义了两种平稳:
Strict stationarity: A time series {} is said to be strictly stationary if the joint distribution of ,, · · ·, is the same as that of,, · · · ,for all choices of natural number n, all choices of time points ,, · · · , and all choices of time lag k.
强平稳过程:对于所有可能的n,所有可能的,, · · · , 和所有可能的k,当,, · · ·,的联合分布与,, · · · ,相同时,我们称其强平稳。
Weak stationarity: A time series {} is said to be weakly (second-order, or co-variance) stationary if:
① the mean function is constant over time, and
② γ(t, t − k) = γ(0, k) for all times t and lags k.
弱平稳过程:当①均值函数是常数函数且②协方差函数仅与时间差相关,我们才称其为弱平稳。
此时我们转到第二个问题:Why weak stationary?(为何弱平稳?)
我们先来说说两种平稳的差别:
两种平稳过程并没有包含关系,即弱平稳不一定是强平稳,强平稳也不一定是弱平稳。
一方面,虽然看上去强平稳的要求好像比弱平稳强,但强平稳并不一定是弱平稳,因为其矩不一定存在。
例子:{}独立服从柯西分布。{}是强平稳,但由于柯西分布期望与方差不存在,所以不是弱平稳。(之所以不存在是因为其并非绝对可积。)
另一方面,弱平稳也不一定是强平稳,因为二阶矩性质并不能确定分布的性质。
例子:,,互相独立。这是弱平稳却不是强平稳。
知道了这些造成差别的根本原因后,我们也可以写出两者的一些联系:
一阶矩和二阶矩存在时,强平稳过程是弱平稳过程。(条件可简化为二阶矩存在,因为)
当联合分布服从多元正态分布时,两平稳过程等价。(多元正态分布的二阶矩可确定分布性质)
而为什么用弱平稳而非强平稳,主要原因是:强平稳条件太强,无论是从理论上还是实际上。
理论上,证明一个时间序列是强平稳的一般很难。正如定义所说,我们要比较,对于所有可能的n,所有可能的,, · · · , 和所有可能的k,当,, · · ·,的联合分布与,, · · · ,相同。当分布很复杂的时候,不仅很难比较所有可能性,也可能很难写出其联合分布函数。
实际上,对于数据,我们也只能估算出它们均值和二阶矩,我们没法知道它们的分布。所以我们在以后的模型构建和预测上都是在用ACF,这些性质都和弱项和性质有关。而且,教我时间序列教授说过:"General linear process(weak stationarity, linearity, causality) covers about 10% of the real data." ,如果考虑的是强平稳,我觉得可能连5%都没有了。
对第二个问题:
教授有天在审本科毕业论文,看到一个写金融的,用平稳时间序列去估计股票走势(真不知这老兄怎么想的)。当时教授就说:“金融领域很多东西之所以难以估计,就是因为其经常突变,根本就不是平稳的。”
果不其然,论文最后实践阶段,对于股票选择的正确率在40%。连期望50%都不到(任意一点以后要么涨要么跌)。
暑假里自己用了一些时间序列的方法企图开发程序性交易程序。
刚开始收益率还好,越往后就越...后面直接亏损了...(软件是金字塔,第二列是利润率)
亏损的图当时没截,现在也没法补了,程序都删了。
所以应该和平稳没关系吧,毕竟我的做法也没假设是平稳的。如果平稳我就不会之后不盈利了。
(吐槽)自己果然不适合做股票、期货什么的...太高端理解不能...
以上