① 時間序列分析的主要用途
根據時間序列模型可調整輸入變數使系統發展過程保持在目標值上,即預測到過程要偏離目標時便可進行必要的控制。
② 如何用Arma模型做股票估計
時間序列分析是經濟領域應用研究最廣泛的工具之一,它用恰當的模型描述歷史數據隨時間變化的規律,並分析預測變數值。ARMA模型是一種最常見的重要時間序列模型,被廣泛應用到經濟領域預測中。給出ARMA模型的模式和實現方法,然後結合具體股票數據揭示股票變換的規律性,並運用ARMA模型對股票價格進行預測。
選取長江證券股票具體數據進行實證分析
1.數據選取。
由於時間序列模型往往需要大樣本,所以這里我選取長江證券從09/03/20到09/06/19日開盤價,前後約三個月,共計60個樣本,基本滿足ARMA建模要求。
數據來源:大智慧股票分析軟體導出的數據(股價趨勢圖如下)
從上圖可看出有一定的趨勢走向,應為非平穩過程,對其取對數lnS,再觀察其平穩性。
2.數據平穩性分析。
先用EVIEWS生成新序列lnS並用ADF檢驗其平穩性。
(1)ADF平穩性檢驗,首先直接對數據平穩檢驗,沒通過檢驗,即不平穩。
可以看出lnS沒有通過檢驗,也是一個非平穩過程,那麼我們想到要對其進行差分。
(2)一階差分後平穩性檢驗,ADF檢驗結果如下,通過1%的顯著檢驗,即數據一階差分後平穩。
可以看出差分後,明顯看出ADF Test Statistic 為-5.978381絕對值是大於1%的顯著水平下的臨界值的,所以可以通過平穩性檢驗。
3.確定適用模型,並定階。可以先生成原始數據的一階差分數據dls,並觀測其相關系數AC和偏自相關系數PAC,以確定其是為AR,MA或者是ARMA模型。
(1)先觀測一階差分數據dls的AC和PAC圖。經檢驗可以看出AC和PAC皆沒有明顯的截尾性,嘗試用ARMA模型,具體的滯後項p,q值還需用AIC和SC具體確定。
(2)嘗試不同模型,根據AIC和SC最小化的原理確定模型ARMA(p,q)。經多輪比較不同ARMA(p,q)模型,可以得出相對應AIC 和 SC的值。
經過多次比較最終發現ARMA(1,1)過程的AIC和SC都是最小的。最終選取ARIMA(1,1,1)模型作為預測模型。並得出此模型的具體表達式為:
DLS t = 0.9968020031 DLS (t-1)- 1.164830718 U (t-1) + U t
4.ARMA模型的檢驗。選取ARIMA(1,1,1)模型,定階和做參數估計後,還應對其殘差序列進行檢驗,對其殘差的AC和Q統計檢驗發現其殘差自相關基本在0附近,且Q值基本通過檢驗,殘差不明顯存在相關,即可認為殘差中沒有包含太多信息,模型擬合基本符合。
5.股價預測。利用以上得出的模型,然後對長江證券6月22日、23日、24日股價預測得出預測值並與實際值比較如下。
有一定的誤差,但相比前期的漲跌趨勢基本吻合,這里出現第一個誤差超出預想的是因為6月22日正好是禮拜一,波動較大,這里正驗證了有研究文章用GARCH方法得出的禮拜一波動大的結果。除了禮拜一的誤差大點,其他日期的誤差皆在接受范圍內。
綜上所述,ARMA模型較好的解決了非平穩時間序列的建模問題,可以在時間序列的預測方面有很好的表現。藉助EViews軟體,可以很方便地將ARMA模型應用於金融等時間序列問題的研究和預測方面,為決策者提供決策指導和幫助。當然,由於金融時間序列的復雜性,很好的模擬還需要更進一步的研究和探討。在後期,將繼續在這方面做出自己的摸索。
③ 金融學中股票的時間序列用哪個數學模型分析
股票的數學模型只是技術分析之一,我們應該放棄以往重技術輕其他分析的方式,把重心放在股票基本面,消息面上。
④ 請股票高手給我解釋一下江恩時間序列的奧秘
一、啥時買,啥時賣?
A、什麼時候買入股票
1、大盤相對低點時買入股票。一般股民想在最低點買入股票,實際上這是辦不到的(即使做到也是偶然的),能做到大盤相對低點,或者說是大盤處於低位,這時入市比較安全。
2、個股價位處於低位時買入股票。
3、證券營業部里投資者已稀稀拉拉時買入股票。
B、買什麼股票
1、買有穩定業績的績優股。買股票一定要看準股票業績。該買的股票業績要穩定,千萬不要買業績大起大落的股票(業績大起大落的股票適於炒作,不適於工薪階層投資)避免股票業績下降,股價下降,深度套牢,難以解放。
2、買成長性好的高科技股。這個前提既是高科技又具有成長性,否則,乾脆不要買。
3、與左鄰右舍相比較,屬於價位相對低的股票。如有幾個股票行業性質相同,業績差不多,盤子基本相同,而其中一隻價位偏低,市盈率低,那麼這個股票可以介入。
總之,買股票要再三考慮、分批建倉。當在大盤低迷時,某股票業績穩定,價位低的股票就可開始分散分批建倉。
C、什麼時候賣出股票
1、自己設定一個盈利點。如盈利20%出局,假如某一股票10元,該股票漲到12元多一點即可賣出。
2、自己設定一個止損點。如虧損8-10%賣出。
3、當大盤進入某一高位時,當證券市場里人頭濟濟時,就應該賣出。
4、賣出時要果斷
⑤ 應用計量經濟學時間序列分析在股票預測上有多大的作用
作用沒有想像中的大,你可以用股票的滯後變數來進行回歸分析,滯後2~3期就夠了,不過數據必須具體點,最好細分到每季度、每月的上證指數,還有時間上怎麼也要十年左右吧!
我以前在論文附錄中做過分析,數據都是自己按季度整理的,挺麻煩的呢,如果需要的話就發給你~
還有就是,我覺得寫關於股票的預測方面的實際用處並不是很大,畢竟股票的影響因素太多,單單的憑藉以前的走勢而預期太不好了。。我自己也炒股票,就像那些macd、kdj之類的指標根本就起不到太大的作用,如果那個能預期的話,股市豈不就成了提款機了?現在你做的這個就像是那些指標一樣,要知道,股市是活的,人是活的,而指標確實死的!說這么多的意思就是股市不是能簡單預測的,你做的那個用處不大。。
如果你想做的話,建議換個題目,我當時的寫的是對弗里德曼的貨幣需求理論在中國市場的分析。你可以寫寫貨幣供應量對通貨膨脹的時滯性,分析下在我國市場的滯後期大概是多少~數據在國家統計局和中國人民銀行都可以找到的,樣本空間一定要足夠大,在對滯後變數分析時候主要考慮各自的T檢驗是否通過,一般從通過之後大概就是那個的滯後期!這個比較直接反而有些許用處~
要是能分析出國家的一般性政策對實體市場的影響就更好了,更有用了~
呵呵,以上只是自己的建議~有什麼其他的問題就給我留言吧~
⑥ 在用時間序列分析股票時,如果連續兩天收盤價一樣,為什麼要剔除一天的數據
同一收盤價影響相同
⑦ 什麼時候用回歸分析,什麼時候用時間序列
兩者的核心區別在於對數據的假設回歸分析假設每個數據點都是獨立的,而時間序列則是利用數據之間的相關性進行預測。
本文會先說明兩者對數據的具體假設差異,再說明AR模型為什麼雖然看上去像回歸分析但還是有差別,最後也提到一個常見的混淆兩者後在金融方向可能出現的問題。
回歸分析對數據的假設:獨立性在回歸分析中,我們假設數據是相互獨立的。這種獨立性體現在兩個方面:一方面,自變數(X)是固定的,已被觀測到的值,另一方面,每個因變數(y)的誤差項是獨立同分布,對於線性回歸模型來說,誤差項是獨立同分布的正態分布,並且滿足均值為0,方差恆定。
這種數據的獨立性的具體表現就是:在回歸分析中,數據順序可以任意交換。在建模的時候,你可以隨機選取數據循序進行模型訓練,也可以隨機選取一部分數據進行訓練集和驗證集的拆分。也正因為如此,在驗證集中,每個預測值的誤差都是相對恆定的:不會存在誤差的積累,導致預測准確度越來越低。
時間序列對數據的假設:相關性但對於時間序列分析而言,我們必須假設而且利用數據的相關性。核心的原因是我們沒有其他任何的外部數據,只能利用現有的數據走向來預測未來。因此,我們需要假設每個數據點之間有相關性,並且通過建模找到對應的相關性,利用它去預測未來的數據走向。這也是為什麼經典的時間序列分析(ARIMA)會用ACF(自相關系數)和PACF(偏自相關系數)來觀察數據之間的相關性。
ACF和PACF分別用兩種方式衡量數據點與數據點之間的相關性時間序列對相關性的假設直接違背了回歸分析的獨立性假設。在多段時間序列預測中,一方面,對於未來預測的自變數可能無法真實的觀察到,另一方面,隨著預測越來越遠,誤差會逐漸積累:你對於長遠未來的預測應該會比近期預測更不確定。因此,時間序列分析需要採用一種完全不同的視角,用不同的模型去進行分析研究。
AR模型和線性回歸模型的「相似」和區別時間序列分析中一個基礎模型就是AR(Auto-Regressive)模型。它利用過去的數據點來預測未來。舉例而言,AR(1)模型利用當前時刻的數據點預測未來的值,它們的數學關系可以被表示為:
它的表達形式的確和線性回歸模型非常類似,甚至連一般的AR(n)模型都和線性回歸有很高的相似性。唯一的差別就是等式右邊的自變數(X)變成了過去的因變數(y)
而正是因為這一點微小的差異,導致兩者的解完全不同。在AR模型中,由於模型自變數成為了過去的因變數,使得自變數與過去的誤差之間有相關性。而這種相關性使得
利用線性模型得到的AR模型的解會是有偏估計(biased)。對於上述結論的實際證明需要引入過多的概念。在此我們只對AR(1)模型作為一個特例來分析。不失一般性,我們可以通過平移數據將AR(1)模型表示成如下的形式:
對於這類模型,線性回歸會給出以下的估計值:對於一般的線性回歸模型而言,由於所有的自變數都會被視為已經觀測到的真實值。所以當我們取均值的時候,我們可以把分母當作已知,通過過去觀測值和未來誤差無關的性質得到無偏的結論。
利用回歸模型預測AR模型的數據模擬結果:參數估計會是有偏估計事實上,我們會用線性回歸模型去近似求解AR模型。因為雖然結果會是有偏的,但是卻是一致估計。也就是說,當數據量足夠大的時候,求解的值會收斂於真實值。這里就不再做展開了。
忽視獨立性的後果:金融方向的常見錯誤希望看到這里你已經弄懂了為什麼不能混淆模型的假設:尤其是獨立性或相關性的假設。接下來我會說一個我見過的
因為混淆假設導致的金融方向的錯誤隨著機器學習的發展,很多人希望能夠將機器學習和金融市場結合起來。利用數據建模來對股票價格進行預測。他們會用傳統的機器學習方法將得到的數據隨機的分配成訓練集和測試集。利用訓練集訓練模型去預測股票漲跌的概率(漲或跌的二維分類問題)。然後當他們去將模型應用到測試集時,他們發現模型的表現非常優秀——能夠達到80~90%的准確度。但是在實際應用中卻沒有這么好的表現。
造成這個錯誤的原因就是他們沒有認識到數據是高度相關的。對於時間序列,我們不能通過隨機分配去安排訓練集和測試集,否則就會出現「利用未來數據」來預測「過去走向」的問題。這個時候,即使你的模型在你的測試集表現出色,也不代表他真的能預測未來股價的走向。
總結時間序列和回歸分析的主要區別在於對數據的假設:回歸分析假設每個數據點都是獨立的,而時間序列則是利用數據之間的相關性進行預測。雖然線性回歸和AR模型看上去有很大的相似性。但由於缺失了獨立性,利用線性回歸求解的AR模型參數會是有偏的。但又由於這個解是一致的,所以在實際運用中還是利用線性回歸來近似AR模型。忽視或假設數據的獨立性很可能會造成模型的失效。金融市場的預測的建模尤其需要注意這一點。
⑧ 怎麼用excel對股票收盤價進行時間序列分析
最好附上內容
⑨ 對股票收盤價進行時間序列分析,預測其下一個交易日的收盤價,並與實際收盤價格進行對比
股票投資的分析這么復雜啊,先問問老師有依據這個買股票沒,再回答。