1. 您好,我想问问您的一个回答的论文题目,百度知道上的问题是:(以下补充)谢谢!
摘 要 研究了沪深300指数日收益率时间序列,经检验其具有马氏性,并建立了马尔可夫链模型。取交易日分时数据,根据分时数据确定状态初始概率分布,通过一步转移概率矩阵对下一交易日的日收益率进行了预测。对该模型分析和计算,得出其为有限状态的不可约、非周期马尔可夫链,求解其平稳分布,从而得到沪深300指数日收益率概率分布。并预测了沪深300指数上涨或下跌的概率,可为投资管理提供参考。
关键词 马尔可夫链模型 沪深300指数 日收益率概率分布 平稳分布
1 引言
沪深300指数于2005年4月正式发布,其成份股为市场中市场代表性好,流动性高,交易活跃的主流投资股票,能够反映市场主流投资的收益情况。众多证券投资基金以沪深300指数为业绩基准,因此对沪深300指数收益情况研究显得尤为重要,可为投资管理提供参考。
取沪深300指数交易日收盘价计算日收益率,可按区间将日收益率分为不同的状态,则日收益率时间序列可视为状态的变化序列,从而可以尝试采用马尔可夫链模型进行处理。马尔可夫链模型在证券市场的应用已取得了不少成果。参考文献[1]、[2]、[3]和[4]的研究比较类似,均以上证综合指数的日收盘价为对象,按涨、平和跌划分状态,取得了一定的成果。但只取了40~45个交易日的数据进行分析,历史数据过少且状态划分较为粗糙。参考文献[5]和[6]以上证综合指数周价格为对象,考察指数在的所定义区间(状态)的概率,然其状态偏少(分别只有6个和5个状态),区间跨度较大,所得结果实际参考价值有限。参考文献[7]对单只股票按股票价格划分状态,也取得了一定成果。
然而收益率是证券市场研究得更多的对象。本文以沪深300指数日收益率为对考察对象进行深入研究,采用matlab7.1作为计算工具,对较多状态和历史数据进行了处理,得出了沪深300指数日收益率概率分布,并对日收益率的变化进行了预测。
2 马尔可夫链模型方法
2.1 马尔可夫链的定义
设有随机过程{Xt,t∈T},T是离散的时间集合,即T={0,1,2,L},其相应Xt可能取值的全体组成状态空间是离散的状态集I={i0,i1,i2,L},若对于任意的整数t∈T和任意的i0,i1,L,it+1∈I,条件概率则称{Xt,t∈T}为马尔可夫链,简称马氏链。马尔可夫链的马氏性的数学表达式如下:
P{Xn+1=in+1|X0=i0,X1=i1,L,Xn=in}=P{Xn+1=in+1|Xn=in} (1)
2.2 系统状态概率矩阵估计
马尔可夫链模型方法的基本内容之一是系统状态的转移概率矩阵估算。估算系统状态的概率转移矩阵一般有主观概率法和统计估算法两种方法。主观概率法一般是在缺乏历史统计资料或资料不全的情况下使用。本文采用统计估算法,其主要过程如下:假定系统有m种状态S1,S2,L,Sm根据系统的状态转移的历史记录,可得到表1的统计表格。其中nij表示在考察的历史数据范围内系统由状态i一步转移到状态j的次数,以■ij表示系统由状态i一步转移到状态的转移概率估计量,则由表1的历史统计数据得到■ij的估计值和状态的转移概率矩阵P如下:
■ij=nij■nik,P=p11 K p1mM O Mpm1 L pmn(2)
2.3 马氏性检验
随机过程{Xt,t∈T}是否为马尔可夫链关键是检验其马氏性,可采用χ2统计量来检验。其步骤如下:(nij)m×m的第j列之和除以各行各列的总和所得到的值记为■.j,即:
■.j=■nij■■nik,且■ij=nij■nik(3)
当m较大时,统计量服从自由度为(m-1)2的χ2分布。选定置信度α,查表得χ2α((m-1)2),如果■2>χ2α((m-1)2),则可认为{Xt,t∈T}符合马氏性,否则认为不是马尔可夫链。
■2=2■■nijlog■ij■.j(4)
2.4 马尔可夫链性质
定义了状态空间和状态的转移概率矩阵P,也就构建了马尔可夫链模型。记Pt(0)为初始概率向量,PT(n)为马尔可夫链时刻的绝对概率向量,P(n)为马尔可夫链的n步转移概率矩阵,则有如下定理:
P(n)=PnPT(n)=PT(0)P(n)(5)
可对马尔可夫链的状态进行分类和状态空间分解,从而考察该马尔可夫链模型的不可约闭集、周期性和遍历性。马尔可夫链的平稳分布有定理不可约、非周期马尔可夫链是正常返的充要条件是存在平稳分布;有限状态的不可约、非周期马尔可夫链必定存在平稳过程。
3 马尔可夫链模型方法应用
3.1 观测值的描述和状态划分
取沪深300指数从2005年1月4日~2007年4月20日共555个交易日收盘价计算日收益率(未考虑分红),将日收益率乘以100并记为Ri,仍称为日收益率。计算公式为:
Ri=(Pi-Pi-1)×100/Pi-1(6)
其中,Pi为日收盘价。
沪深300指数运行比较平稳,在考察的历史数据范围内日收益率有98.38%在[-4.5,4.5]。可将此范围按0.5的间距分为18个区间,将小于-4.5和大于4.5各记1区间,共得到20个区间。根据日收益率所在区间划分为各个状态空间,即可得20个状态(见表2)。
3.2 马氏性检验
采用χ2统计量检验随机过程{Xt,t∈T}是否具有马氏性。用前述统计估算法得到频率矩阵(nij)20×20。
由(3)式和(4)式可得:■.j=■nij■■nik,且■ij=nij■nik,■2=2■■nijlog■ij■.j=446.96,令自由度为k=(m-1)2即k=361,取置信度α=0.01。由于k>45,χ2α(k)不能直接查表获得,当k充分大时,有:
χ2α(k)≈■(zα+■)2(7)
其中,zα是标准正态分布的上α分位点。查表得z0.01=2.325,故可由(1)、(7)式得,即统计量,随机过程{Xt,t∈T}符合马氏性,所得模型是马尔可夫链模型。
3.3 计算转移概率矩阵及状态一步转移
由频率矩阵(nij)20×20和(1)、(2)式得转移概率矩阵为P=(Pij)20×20。考察2007年4月20日分时交易数据(9:30~15:30共241个数据),按前述状态划分方法将分时交易数据收益率归于各状态,并记Ci为属于状态i的个数,初始概率向量PT(0)=(p1,p2,L,pt,L,p20),则:
pj=Cj/241,j=1,2,K,20(8)
下一交易日日收益率分布概率PT(0)={p1(1),p2(1),L,pi(1),L,p20(1)},且有PT(1)-PT(0)p,计算结果如表3所示。
3.4 马尔可夫链遍历性和平稳分布
可以分析该马尔可夫链的不可约集和周期性,从而进一步考察其平稳分布,然而其分析和求解非常复杂。本文使用matlab7.1采用如下算法进行求解:将一步转移概率矩阵P做乘幂运算,当时Pn+1=Pn停止,若n>5 000亦停止运算,返回Pn和n。计算发现当n=48时达到稳定,即有P(∞)=P(48)=P48。考察矩阵P(48)易知:各行数据都相等,不存在数值为0的行和列,且任意一行的行和为1。故该马尔可夫链{Xt,t∈T}只有一个不可约集,具有遍历性,且存在平稳分布{πj,j∈I},平稳分布为P(48)任意一行。从以上计算和分析亦可知该马尔可夫链是不可约、非周期的马尔可夫链,存在平稳分布。计算所得平稳分布如表4所示。
3.5 计算结果分析
表3、表4给出了由当日收益率统计出的初始概率向量PT(0),状态一步预测所得绝对概率向量PT(1)和日收益率平稳分布,由表3和表4综合可得图1。可以看出,虽然当日(2007年4月20日)收益率在区间(1.5,4.5)波动且在(2.5,4.5)内的概率达到了0.7261,表明在2007年4月20日,日收益率较高(实际收盘时,日收益率为4.41),但其下一交易日和从长远来看其日收益率概率分布依然可能在每个区间。这是显然的,因为日收益率是随机波动的。
对下一交易日收益率预测(PT(1)),发现在下一交易日收益率小于0的概率为0.4729,大于0的概率为0.5271,即下一交易日收益率大于0的概率相对较高,其中在区间(-2,-1.5)、(0.5,1)和(1,1.5)概率0.2675、0.161和0.1091依次排前三位,也说明下一交易日收益率在(-2,-1.5)的概率会比较高,有一定的风险。
从日收益率长远情况(平稳分布)来看,其分布类似正态分布但有正的偏度,说明其极具投资潜力。日收益率小于0的概率为0.4107,大于0的概率为0.5893,即日收益率大于0的概率相当的高于其小于0的概率。
4 结语
采用马尔可夫链模型方法可以依据某一交易日收益率情况向对下一交易日进行预测,也可得到从长远来看其日收益率的概率分布,定量描述了日收益率。通过对沪深300指数日收益率分析和计算,求得沪深300指数日收益率的概率分布,发现沪深300指数日收益率大于0的概率相对较大(从长远看,达到了0.5893,若考虑分红此概率还会变大),长期看来沪深300指数表现乐观。若以沪深300指数构建指数基金再加以调整,可望获得较好的回报。
笔者亦采用范围(-5,5)、状态区间间距为1和范围(-6,6)、状态区间间距为2进行运算,其所得结果类似。当采用更大的范围(如-10,10等)和不同的区间大小进行运算,计算发现若状态划分过多,所得模型不易通过马氏性检验,如何更合理的划分状态使得到的结果更精确是下一步的研究之一。在后续的工作中,采用ANN考察所得的日收益率预测和实际日收益率的关系也是重要的研究内容。马尔可夫链模型方法也可对上证指数和深证成指数进行类似分析。
参考文献
1 关丽娟,赵鸣.沪综指走势的马尔可夫链模型预测[J].山东行政学院,山东省经济管理干部学院学报,2005(4)
2 陈奕余.基于马尔可夫链模型的我国股票指数研究[J].商场现代化(学术研讨),2005(2)
3 肖泽磊,卢悉早.基于马尔可夫链系统的上证指数探讨[J].科技创业月刊,2005(9)
4 边廷亮,张洁.运用马尔可夫链模型预测沪综合指数[J].统计与决策,2004(6)
5 侯永建,周浩.证券市场的随机过程方法预测[J].商业研究,2003(2)
6 王新蕾.股指马氏性的检验和预测[J].统计与决策,2005(8)
7 张宇山,廖芹.马尔可夫链在股市分析中的若干应用[J].华南理工大学学报(自然科学版),2003(7)
8 冯文权.经济预测与决策技术[M].武汉:武汉大学出版社,2002
9 刘次华.随机过程[M].武汉:华中科技大学出版社,2001
10 盛千聚.概率论与数理统计[M].北京:高等教育出版社.1989转
2. 什么是马尔科夫链
马尔可夫链,因安德烈•马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。
原理简介
马尔可夫链是随机变量X_1,X_2,X_3...的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而X_n的值则是在时间n的状态。如果X_{n+1}对于过去状态的条件概率分布仅是X_n的一个函数,则 P(X_{n+1}=x|X_0, X_1, X_2, \ldots, X_n) = P(X_{n+1}=x|X_n). 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。
编辑本段理论发展
马尔可夫在1906年首先做出了这类过程 。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 物理马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算术编码(着名的LZMA数据压缩算法就使用了马尔可夫链与类似于算术编码的区间编码)。马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。 马尔可夫链最近的应用是在地理统计学(geostatistics)中。其中,马尔可夫链用在基于观察数据的二到三维离散变量的随机模拟。这一应用类似于“克里金”地理统计学(Kriging geostatistics),被称为是“马尔可夫链地理统计学”。这一马尔可夫链地理统计学方法仍在发展过程中。
编辑本段马尔可夫过程
马尔可夫过程,能为给定样品文本,生成粗略,但看似真实的文本:他们被用于众多供消遣的“模仿生成器”软件。马尔可夫链还被用于谱曲。 它们是后面进行推导必不可少的条件:(1)尺度间具有马尔可夫性质.随机场从上到下形成了马尔可夫链,即 Xi 的分布只依赖于 Xi,与其他更粗 糙的尺度无关,这是因为 Xi 已经包含了所有位于其上层的尺度所含有的信息.(2) 随机场像素的条件独立性.若 Xi 中像素的父节点已知,则 Xi 中的像素彼此独立.这一性质使我们不必再 考虑平面网格中相邻像素间的关系,而转为研究尺度间相邻像素(即父子节点)间的关系.(3) 设在给定 Xn 的情况下,Y 中的像素彼此独立.(4) 可分离性.若给定任一节点 xs,则以其各子节点为根的子树所对应的变量相互独立. 从只有一个节点的根到和图像大小一致的叶子节点,建立了完整的四叉树模型,各层间的马尔可夫链的因 果关系使我们可以由非迭代的推导过程快速计算出 X 的最大后验概率或后验边缘概率.
编辑本段模型
完整的四叉树模型也存在一些问题.(1) 因概率值过小,计算机的精度难以保障而出现下溢,若层次多,这一 问题更为突出.虽然可以通过取对数的方法将接近于 0 的小值转换成大的负值,但若层次过多、概率值过小,该 方法也难以奏效,且为了这些转换所采用的技巧又增加了不少计算量.(2) 当图像较大而导致层次较多时,逐层 的计 算甚 为繁琐 下 溢 现 象肯定 会出 现 , 存储中 间变 量也 会占 用大 量空 间 , 在时 间空间 上都 有更 多的 开销 . (3) 分层模型存在块效应,即区域边界可能出现跳跃,因为在该模型中,同一层随机场中相邻的像素不一定有同 一个父节点,同一层的相邻像素间又没有交互,从而可能出现边界不连续的现象.
编辑本段MRF 模型
为了解决这些问题,我们提出一种新的分层 MRF 模型——半树模型,其结构和图1 5类似,仍然是四叉树, 只 是层数比完整的四叉树大大减少,相当于将完整的四叉树截为两部分,只取下面的这部分.模型最下层仍和图像 大小一致,但最上层则不止一个节点.完整的四叉树模型所具有的性质完全适用于半树模型,不同点仅在于最上层,完整的树模型从上到下构成 了完整的因果依赖性,而半树模型的层间因果关系被截断,该层节点的父节点及祖先均被删去,因此该层中的各 节点不具有条件独立性,即不满足上述的性质 2,因而对这一层转为考虑层内相邻节点间的关系.半树模型和完 整的树模型相比,层次减少了许多,这样,层次间的信息传递快了,概率值也不会因为过多层次的逐层计算而小 到出现下溢.但第 0 层带来了新的问题,我们必须得考虑节点间的交互,才能得出正确的推导结果,也正是因为在 第 0 层考虑了相邻节点间的影响,使得该模型的块现象要好于完整的树模型.对于层次数的选取,我们认为不宜多,太多则达不到简化模型的目的,其优势体现不出来,但也不能太少,因 为第 0 层的概率计算仍然要采用非迭代的算法,层数少表明第 0 层的节点数仍较多,计算费时,所以在实验中将 层数取为完整层次数的一半或一半稍少.
编辑本段MPM 算法
3半树模型的 MPM 算法 图像分割即已知观测图像 y,估计 X 的配置,采用贝叶斯估计器,可由一个优化问题来表示: ?x = arg min [E C ( x, x )′ | Y = y] ,x其中代价函数 C 给出了真实配置为 x 而实际分割结果为 x′时的代价.在已知 y 的情况下,最小化这一代价的期 望,从而得到最佳的分割.代价函数取法不同得到了不同的估计器,若 C(x,x′)=1?δ(x,x′)(当 x=x′时δ(x,x′)=1,否则 δ(x,x′)=0)得到的是 MAP 估计器,它意味着 x 和 x′只要在一个像素处有不同,则代价为 1,对误分类的惩罚比较重,汪西莉 等:一种分层马尔可夫图像模型及其推导算法 而在实际中存在一些误分类是完全允许的.若将半树模型的 MPM 算法记为 HT-MPM,它分为向上算法和向下算法两步,向上算法自下而上根据式(2)、 式 (3)逐层计 算P(yd(s)|xs)和 P(xs,xρ(s)|yd(s)), 对最下层 P(yd(s)|xs)=P(ys|xs). 向下算法自上 而下根据 式 (1)逐层计算 P(xs|y),对最上层由 P(x0|y)采样 x0(1),…,x0(n),
编辑本段详细说明
马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是数学中具有马尔可夫性质的离散时间随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当期以前的历史状态)对于预测将来(即当期以后的未来状态)是无关的。 时间和状态都是离散的马尔可夫过程称为马尔可夫链, 简记为Xn = X(n),n = 1,2,3,4····。 马尔可夫链是随机变量的一个数列。这些变量的范围,即他们所有可能取值的集合,被称为“状态空间”,而Xn的值则是在时间n的状态。如果Xn + 1对于过去状态的条件概率分布仅是Xn的一个函数,则 这里x为过程中的某个状态。上面这个恒等式可以被看作是马尔可夫性质。 马尔可夫在1906年首先做出了这类过程 。而将此一般化到可数无限状态空间是由柯尔莫果洛夫在1936年给出的。 马尔可夫链与布朗运动以及遍历假说这两个二十世纪初期物理学重要课题是相联系的,但马尔可夫寻求的似乎不仅于数学动机,名义上是对于纵属事件大数法则的扩张。 马尔可夫链是满足下面两个假设的一种随机过程: 1、t+l时刻系统状态的概率分布只与t时刻的状态有关,与t时刻以前的状态无关; 2、从t时刻到t+l时刻的状态转移与t的值无关。一个马尔可夫链模型可表示为=(S,P,Q),其中各元的含义如下: 1)S是系统所有可能的状态所组成的非空的状态集,有时也称之为系统的状态空间,它可以是有限的、可列的集合或任意非空集。本文中假定S是可数集(即有限或可列)。用小写字母i,j(或Si,Sj)等来表示状态。 2)是系统的状态转移概率矩阵,其中Pij表示系统在时刻t处于状态i,在下一时刻t+l处于状态i的概率,N是系统所有可能的状态的个数。对于任意i∈s,有。 3)是系统的初始概率分布,qi是系统在初始时刻处于状态i的概率,满足。
编辑本段基本性质
马尔可夫链模型的性质 马尔可夫链是由一个条件分布来表示的 P(Xn + 1 | Xn) 这被称为是随机过程中的“转移概率”。这有时也被称作是“一步转移概率”。二、三,以及更多步的转移概率可以导自一步转移概率和马尔可夫性质: 同样: 这些式子可以通过乘以转移概率并求k−1次积分来一般化到任意的将来时间n+k。 边际分布P(Xn)是在时间为n时的状态的分布。初始分布为P(X0)。该过程的变化可以用以下的一个时间步幅来描述: 这是Frobenius-Perron equation的一个版本。这时可能存在一个或多个状态分布π满足: 其中Y只是为了便于对变量积分的一个名义。这样的分布π被称作是“平稳分布”(Stationary Distribution)或者“稳态分布”(Steady-state Distribution)。一个平稳分布是一个对应于特征根为1的条件分布函数的特征方程。 平稳分布是否存在,以及如果存在是否唯一,这是由过程的特定性质决定的。“不可约”是指每一个状态都可来自任意的其它状态。当存在至少一个状态经过一个固定的时间段后连续返回,则这个过程被称为是“周期的”。
编辑本段离散状态
离散状态空间中的马尔可夫链模型 如果状态空间是有限的,则转移概率分布可以表示为一个具有(i,j)元素的矩阵,称之为“转移矩阵”: Pij = P(Xn + 1 = i | Xn = j) 对于一个离散状态空间,k步转移概率的积分即为求和,可以对转移矩阵求k次幂来求得。就是说,如果是一步转移矩阵,就是k步转移后的转移矩阵。 平稳分布是一个满足以下方程的向量: 在此情况下,稳态分布π * 是一个对应于特征根为1的、该转移矩阵的特征向量。 如果转移矩阵不可约,并且是非周期的,则收敛到一个每一列都是不同的平稳分布π * ,并且, 独立于初始分布π。这是由Perron-Frobenius theorem所指出的。 正的转移矩阵(即矩阵的每一个元素都是正的)是不可约和非周期的。矩阵被称为是一个随机矩阵,当且仅当这是某个马尔可夫链中转移概率的矩阵。 注意:在上面的定式化中,元素(i,j)是由j转移到i的概率。有时候一个由元素(i,j)给出的等价的定式化等于由i转移到j的概率。在此情况下,转移矩阵仅是这里所给出的转移矩阵的转置。另外,一个系统的平稳分布是由该转移矩阵的左特征向量给出的,而不是右特征向量。 转移概率独立于过去的特殊况为熟知的Bernoulli scheme。仅有两个可能状态的Bernoulli scheme被熟知为贝努利过程
编辑本段现实应用
马尔可夫链模型的应用
科学中的应用
马尔可夫链通常用来建模排队理论和统计学中的建模,还可作为信号模型用于熵编码技术,如算法编码。马尔可夫链也有众多的生物学应用,特别是人口过程,可以帮助模拟生物人口过程的建模。隐蔽马尔可夫模型还被用于生物信息学,用以编码区域或基因预测。 马尔可夫链最近的应用是在地理统计学(geostatistics)中。其中,马尔可夫链用在基于观察数据的二到三维离散变量的随机模拟。这一应用类似于“克里金”地理统计学(Kriging geostatistics),被称为是“马尔可夫链地理统计学”。这一马尔可夫链地理统计学方法仍在发展过程中。
人力资源中的应用
马尔可夫链模型主要是分析一个人在某一阶段内由一个职位调到另一个职位的可能性,即调动的概率。该模型的一个基本假设就是,过去的内部人事变动的模式和概率与未来的趋势大体相一致。实际上,这种方法是要分析企业内部人力资源的流动趋势和概率,如升迁、转职、调配或离职等方面的情况,以便为内部的人力资源的调配提供依据。 它的基本思想是:通过发现过去组织人事变动的规律,以推测组织在未来人员的供给情况。马尔可夫链模型通常是分几个时期收集数据,然后再得出平均值,用这些数据代表每一种职位中人员变动的频率,就可以推测出人员变动情况。 具体做法是:将计划初期每一种工作的人数量与每一种工作的人员变动概率相乘,然后纵向相加,即得到组织内部未来劳动力的净供给量。其基本表达式为: Ni(t):t时间内I类人员数量; Pji:人员从j类向I类转移的转移率; Vi(t):在时间(t-1,t)I类所补充的人员数。 企业人员的变动有调出、调入、平调、晋升与降级五种。表3 假设一家零售公司在1999至2000年间各类人员的变动情况。年初商店经理有12人,在当年期间平均90%的商店经理仍在商店内,10%的商店经理离职,期初36位经理助理有 11%晋升到经理,83%留在原来的职务,6%离职;如果人员的变动频率是相对稳定的,那么在2000年留在经理职位上有11人(12×90%),另外,经理助理中有4人(36×83%)晋升到经理职位,最后经理的总数是15人(11+4)。可以根据这一矩阵得到其他人员的供给情况,也可以计算出其后各个时期的预测结果。
3. 马尔可夫链运用在股票指数模型中的局限性
挟制于技术指标
4. 什么是齐次马尔可夫链
马尔可夫链
科普中国
本词条由“科普中国”科学网络词条编写与应用工作项目审核
审阅专家张连明详情
马尔可夫链(Markov Chain, MC)是概率论和数理统计中具有马尔可夫性质(Markov property)且存在于离散的指数集(index set)和状态空间(state space)内的随机过程(stochastic process)[1][2]。适用于连续指数集的马尔可夫链被称为马尔可夫过程(Markov process),但有时也被视为马尔可夫链的子集,即连续时间马尔可夫链(Continuous-Time MC, CTMC),与离散时间马尔可夫链(Discrete-Time MC, DTMC)相对应,因此马尔可夫链是一个较为宽泛的概念[2]。
马尔可夫链可通过转移矩阵和转移图定义,除马尔可夫性外,马尔可夫链可能具有不可约性、重现性、周期性和遍历性。一个不可约和正重现的马尔可夫链是严格平稳的马尔可夫链,拥有唯一的平稳分布。遍历马尔可夫链(ergodic MC)的极限分布收敛于其平稳分布[1]。
马尔可夫链可被应用于蒙特卡罗方法中,形成马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)[2][3],也被用于动力系统、化学反应、排队论、市场行为和信息检索的数学建模。此外作为结构最简单的马尔可夫模型(Markov model),一些机器学习算法,例如隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(Markov Random Field, MRF)和马尔可夫决策过程(Markov decision process, MDP)以马尔可夫链为理论基础[4]。
马尔可夫链的命名来自俄国数学家安德雷·马尔可夫(Андрей Андреевич Марков)以纪念其首次提出马尔可夫链和对其收敛性质所做的研究。
5. 马尔科夫链在经济预测和决策中的应用
马尔科夫链对经济预测和决策是通过模型来进行的。
马尔可夫链,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。
马尔科夫链是一种预测工具。适宜对很多经济现象的描述。最为典型的就是对股票市场的分析。有人利用历史数据预测未来股票或股市走势,发现并不具备明显的准确性,得出的结论是股市无规律可言。
经济学者们用建立马尔科夫链模型来进行预测和决策,一般分为三步,设定状态,计算转移概率矩阵,计算转移的结果。
6. 马尔可夫链是啥
回答如下
马尔可夫链(英语:Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain,缩写为DTMC),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名,为状态空间中经过从一个状态到另一个状态的转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质。
马尔可夫链是一个相当常见、相当简单的对随机过程进行统计建模的方式。它们被应用在很多领域,从文本生成到金融建模。一个比较流行的例子是 SubredditSimulator,它使用马尔可夫链自动创建整个 subreddit 的内容。总之,马尔可夫链在概念上是非常直观,并且易于理解的,不使用任何高级的统计或者数学概念就可以实现。马尔可夫链是入门概率建模和数据科学技术的很好的开端。
7. 马尔可夫链的现实应用
马尔可夫链模型的应用 马尔可夫链模型主要是分析一个人在某一阶段内由一个职位调到另一个职位的可能性,即调动的概率。该模型的一个基本假设就是,过去的内部人事变动的模式和概率与未来的趋势大体相一致。实际上,这种方法是要分析企业内部人力资源的流动趋势和概率,如升迁、转职、调配或离职等方面的情况,以便为内部的人力资源的调配提供依据。它的基本思想是:通过发现过去组织人事变动的规律,以推测组织在未来人员的供给情况。马尔可夫链模型通常是分几个时期收集数据,然后再得出平均值,用这些数据代表每一种职位中人员变动的频率,就可以推测出人员变动情况。
具体做法是:将计划初期每一种工作的人数量与每一种工作的人员变动概率相乘,然后纵向相加,即得到组织内部未来劳动力的净供给量。其基本表达式为:
Ni(t):t时间内I类人员数量;
Pji:人员从j类向I类转移的转移率;
Vi(t):在时间(t-1,t)I内所补充的人员数。
企业人员的变动有调出、调入、平调、晋升与降级五种。表3 假设一家零售公司在1999至2000年间各类人员的变动情况。年初商店经理有12人,在当年期间平均90%的商店经理仍在商店内,10%的商店经理离职,期初36位经理助理有 11%晋升到经理,83%留在原来的职务,6%离职;如果人员的变动频率是相对稳定的,那么在2000年留在经理职位上有11人(12×90%),另外,经理助理中有4人(36×11%)晋升到经理职位,最后经理的总数是15人(11+4)。可以根据这一矩阵得到其他人员的供给情况,也可以计算出其后各个时期的预测结果。
假设的零售公司的马尔可夫分析,见下表:
8. 简述什么是马尔科链
马尔可夫链是概率论和数理统计中具有马尔可夫性质且存在于离散的指数集和状态空间内的随机过程
马尔可夫链可通过转移矩阵和转移图定义,除马尔可夫性外,马尔可夫链可能具有不可约性、常返性、周期性和遍历性。一个不可约和正常返的马尔可夫链是严格平稳的马尔可夫链,拥有唯一的平稳分布。遍历马尔可夫链(ergodic MC)的极限分布收敛于其平稳分布[1]。
马尔可夫链可被应用于蒙特卡罗方法中,形成马尔可夫链蒙特卡罗(Markov Chain Monte Carlo, MCMC)[2-3],也被用于动力系统、化学反应、排队论、市场行为和信息检索的数学建模。此外作为结构最简单的马尔可夫模型(Markov model),一些机器学习算法,例如隐马尔可夫模型(Hidden Markov Model, HMM)、马尔可夫随机场(Markov Random Field, MRF)和马尔可夫决策过程(Markov decision process, MDP)以马尔可夫链为理论基础[4]。
马尔可夫链的命名来自俄国数学家安德雷·马尔可夫(Андрей Андреевич Марков)以纪念其首次提出马尔可夫链和对其收敛性质所做的研究
9. 什么是马尔可夫预测方法
马尔可夫预测法(也叫马尔科夫) 马尔可夫是俄国着名的数学家。马尔可夫预测法是以马尔可夫的名字命名的一种特殊的市场预测方法。马尔可夫预测法主要用于市场占有率的预测和销售期望利润的预测。 一、马尔可夫过程和马尔可夫预测法概念 我们知道,事物的发展状态总是随着时间的推移而不断变化的。在一般情况下,人们要了解事物未来的发展状态,不但要看到事物现在的状态,还要看到事物过去的状态。马尔可夫认为,还存在另外一种情况, 人们要了解事物未来的发展状态, 只须知道事物现在的状态,而与事物以前的状态毫无关系。例如,A产品明年是畅销还是滞销, 只与今年的销售情况有关, 而与往年的销售情况没有直接的关系。后者的这种情况就称为马尔可夫过程,前者的情况就属于非马尔可夫过程。 马尔可夫过程的重要特征是无后效性。事物第n次出现的状态,只与其第n-1次的状态有关,它与以前的状态无关。举一个通俗例子说:池塘里有三片荷叶和一只青蛙,假设青蛙只在荷叶上跳来跳去。若现在青蛙在荷叶A上,那么下一时刻青蛙要么在原荷叶A上跳动,要么跳到荷叶B上,或荷叶C上。青蛙究竟处在何种状态上,只与当前状态有关,而与以前位于哪一片荷叶上并无关系。这种性质,就是无后效性。 所谓“无后效性”,是指过去对未来无后效,而不是指现在对未来无后效。马尔可夫链是与马尔可夫过程紧密相关的一个概念。马尔可夫链指出事物系统的状态由过去转变到现在, 再由现在转变到将来,一环接一环像一根链条,而作为马尔可夫链的动态系统将来是什么状态,取什么值, 只与现在的状态、取值有关, 而与它以前的状态、取值无关。因此,运用马尔可夫链只需要最近或现在的动态资料便可预测将来。马尔可夫预测法就是应用马尔可夫链来预测市场未来变化状态。